REAL-TIME PEDESTRIAN DETECTION USING SUPPORT VECTOR MACHINES

Author(s):  
SEONGHOON KANG ◽  
HYERAN BYUN ◽  
SEONG-WHAN LEE

In this paper, we present a real-time pedestrian detection method in outdoor environments. It is necessary for pedestrian detection to implement obstacle and face detection which are major parts of a walking guidance system for the visually impaired. It detects foreground objects on the ground, discriminates pedestrians from other noninterest objects, and extracts candidate regions for face detection and recognition. For effective real-time pedestrian detection, we have developed a method using stereo-based segmentation and the SVM (Support Vector Machines), which works well particularly in binary classification problem (e.g. object detection). We used vertical edge features extracted from arms, legs and torso. In our experiments, test results on a large number of outdoor scenes demonstrated the effectiveness of the proposed pedestrian detection method.

Author(s):  
Weixia Xu ◽  
Dingjiang Huang ◽  
Shuigeng Zhou

AbstractA classification problem aims at constructing a best classifier with the smallest risk. When the sample size approaches infinity, the learning algorithms for a classification problem are characterized by an asymptotical property, i.e., universal consistency. It plays a crucial role in measuring the construction of classification rules. A universal consistent algorithm ensures that the larger the sample size of the algorithm is, the more accurately the distribution of the samples could be reconstructed. Support vector machines (SVMs) are regarded as one of the most important models in binary classification problems. How to effectively extend SVMs to twin support vector machines (TWSVMs) so as to improve performance of classification has gained increasing interest in many research areas recently. Many variants for TWSVMs have been proposed and used in practice. Thus in this paper, we focus on the universal consistency of TWSVMs in a binary classification setting. We first give a general framework for TWSVM classifiers that unifies most of the variants of TWSVMs for binary classification problems. Based on it, we then investigate the universal consistency of TWSVMs. To do this, we give some useful definitions of risk, Bayes risk and universal consistency for TWSVMs. Theoretical results indicate that universal consistency is valid for various TWSVM classifiers under some certain conditions, including covering number, localized covering number and stability. For applications of our general framework, several variants of TWSVMs are considered.


2000 ◽  
Vol 12 (11) ◽  
pp. 2655-2684 ◽  
Author(s):  
Manfred Opper ◽  
Ole Winther

We derive a mean-field algorithm for binary classification with gaussian processes that is based on the TAP approach originally proposed in statistical physics of disordered systems. The theory also yields an approximate leave-one-out estimator for the generalization error, which is computed with no extra computational cost. We show that from the TAP approach, it is possible to derive both a simpler “naive” mean-field theory and support vector machines (SVMs) as limiting cases. For both mean-field algorithms and support vector machines, simulation results for three small benchmark data sets are presented. They show that one may get state-of-the-art performance by using the leave-one-out estimator for model selection and the built-in leave-one-out estimators are extremely precise when compared to the exact leave-one-out estimate. The second result is taken as strong support for the internal consistency of the mean-field approach.


Author(s):  
Michaela Staňková ◽  
David Hampel

This article focuses on the problem of binary classification of 902 small- and medium‑sized engineering companies active in the EU, together with additional 51 companies which went bankrupt in 2014. For classification purposes, the basic statistical method of logistic regression has been selected, together with a representative of machine learning (support vector machines and classification trees method) to construct models for bankruptcy prediction. Different settings have been tested for each method. Furthermore, the models were estimated based on complete data and also using identified artificial factors. To evaluate the quality of prediction we observe not only the total accuracy with the type I and II errors but also the area under ROC curve criterion. The results clearly show that increasing distance to bankruptcy decreases the predictive ability of all models. The classification tree method leads us to rather simple models. The best classification results were achieved through logistic regression based on artificial factors. Moreover, this procedure provides good and stable results regardless of other settings. Artificial factors also seem to be a suitable variable for support vector machines models, but classification trees achieved better results using original data.


Sign in / Sign up

Export Citation Format

Share Document