3D Reconstruction and Visual Simulation of Double-Flowered Plants Based on Laser Scanning

Author(s):  
Dongna Cai ◽  
Zhi Li ◽  
Yongjian Huai

Flower plants have become a major difficulty in virtual plant research because of their rich external morphological structure and complex physiological processes. Computer vision simulation provides powerful tools for exploring powerful biological systems and operating laws. In this paper, Chrysanthemum and Chinese rose, double flowers as the symbolic flowers of Beijing, are chosen as the study subject. On the basis of maximizing the protection of flower growth structure, an effective method based on laser scanning for three-dimensional (3D) reconstruction and visual simulation of flower plants is proposed. This method uses laser technology to scan the sample and store it as point cloud data. After applying a series of image analysis and processing techniques such as splicing, denoising, repairing and color correction, the digital data optimized by the sample is obtained accurately and efficiently, and a highly realistic 3D simulation model of the plant is formed. The results of the research indicate that it is a convenient research method for the 3D reconstruction of flower plants and computer vision simulation of virtual plants. It also provides an effective way for in-depth study of scientific experiments and digital protection of rare and endangered plants.

Author(s):  
Andrea Zanoni ◽  
Giacomo Maninetti ◽  
Federico Cheli ◽  
Marco Garozzo

Concrete bridge inspection is nowadays primarily a slow, subjective, non-comprehensive and costly set of procedures. Automation of the acquisition method is especially desirable for economical and repeatability reasons. Digital data is normally derived from well established non-destructive testing techniques, high resolution cameras and, more recently, by 3D laser scanning. This latter technique has some advantageous aspects in terms of reliability, repeatability, completeness and intuitiveness of the analysis of the resulting 3D reconstruction of the concrete structure. Statical laser scanning is, though, impractical for a variety of different reasons. A possible way of overcoming such difficulties is represented by dynamical measurement, achieved by moving in a prescribed manner the laser scanner during the scanning process. This procedure, on the other hand, requires a reliable tracking system for the laser scanner position and orientation. This work focuses on the development of such system, based primarily on computer vision measurement systems. A compact and lightweight 3D laser scanner has been placed on an automated carrier able to move along a standard inspection by-bridge, and a system of cameras and transducers has been designed to measure the carrier position and orientation based on the assumption of rigid body motion of the by-bridge multi-link arm during inspection operations. Several experimental tests have been performed to assess the viability of the proposed system and to evaluate its performance.


2019 ◽  
Vol 8 (6) ◽  
pp. 285 ◽  
Author(s):  
Balletti ◽  
Ballarin

In recent decades, 3D acquisition by laser scanning or digital photogrammetry has become one of the standard methods of documenting cultural heritage, because it permits one to analyze the shape, geometry, and location of any artefact without necessarily coming into contact with it. The recording of three-dimensional metrical data of an asset allows one to preserve and monitor, but also to understand and explain the history and cultural heritage shared. In essence, it constitutes a digital archive of the state of an artefact, which can be used for various purposes, be remodeled, or kept safely stored. With the introduction of 3D printing, digital data can once again take on material form and become physical objects from the corresponding mathematical models in a relatively short time and often at low cost. This possibility has led to a different consideration of the concept of virtual data, no longer necessarily linked to simple visual fruition. The importance of creating high-resolution physical copies has been reassessed in light of different types of events that increasingly threaten the protection of cultural heritage. The aim of this research is to analyze the critical issues in the production process of the replicas, focusing on potential problems in data acquisition and processing and on the accuracy of the resulting 3D printing. The metric precision of the printed model with 3D technology are fundamental for everything concerning geomatics and must be related to the same characteristics of the digital model obtained through the survey analysis.


Author(s):  
Y. Hori ◽  
T. Ogawa

The implementation of laser scanning in the field of archaeology provides us with an entirely new dimension in research and surveying. It allows us to digitally recreate individual objects, or entire cities, using millions of three-dimensional points grouped together in what is referred to as "point clouds". In addition, the visualization of the point cloud data, which can be used in the final report by archaeologists and architects, should usually be produced as a JPG or TIFF file. Not only the visualization of point cloud data, but also re-examination of older data and new survey of the construction of Roman building applying remote-sensing technology for precise and detailed measurements afford new information that may lead to revising drawings of ancient buildings which had been adduced as evidence without any consideration of a degree of accuracy, and finally can provide new research of ancient buildings. We used laser scanners at fields because of its speed, comprehensive coverage, accuracy and flexibility of data manipulation. Therefore, we “skipped” many of post-processing and focused on the images created from the meta-data simply aligned using a tool which extended automatic feature-matching algorithm and a popular renderer that can provide graphic results.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2981 ◽  
Author(s):  
Limei Song ◽  
Xinyao Li ◽  
Yan-gang Yang ◽  
Xinjun Zhu ◽  
Qinghua Guo ◽  
...  

The non-contact three-dimensional measurement and reconstruction techniques have played a significant role in the packaging and transportation of precious cultural relics. This paper develops a structured light based three-dimensional measurement system, with a low-cost for cultural relics packaging. The structured light based system performs rapid measurements and generates 3D point cloud data, which is then denoised, registered and merged to achieve accurate 3D reconstruction for cultural relics. The multi-frequency heterodyne method and the method in this paper are compared. It is shown that the relative accuracy of the proposed low-cost system can reach a level of 1/1000. The high efficiency of the system is demonstrated through experimental results.


Author(s):  
Jung Kwan Seo ◽  
Deok Eun Kim

Requests for the accurate planning of the erection process using modelling and simulation techniques have recently increased in many engineering fields, including shipbuilding and the offshore industries. In this study, an efficient erection simulation framework is proposed based on three-dimensional (3-D) measurement data that can support the development of various simulation systems for modular construction planning in the offshore and shipbuilding industries. The proposed simulation framework can be used to predict the erection state to optimise any gap, weak point and/or overlap of the modular construction process on the basis of 3-D laser scanning measurement data. To evaluate the efficiency and applicability of the proposed simulation framework, the framework is applied to the drillship modular erection process. The results show that the proposed simulation framework provides a consistent, integrated developmental environment for an erection process in the offshore industries. In addition, it can be expected that the time costs and risks of on-site fatality associated with the erection process will be reduced.


2012 ◽  
Vol 256-259 ◽  
pp. 2315-2319
Author(s):  
Wen Long Liu ◽  
Xiao Ping Zhao ◽  
Xiao Long Wang ◽  
Bao Guo Xu ◽  
De Tao Lv

This paper makes use of the three-dimensional laser scanning technology measurement speed and high precision which combines the advantage of the field control survey, coordinate system transformation, the point cloud data processing, establish the triangle nets, texture mapping etc process, get the space of ancient cultural relics data and texture, antiquities for 3D modeling provide real, real size, real texture digital model for reference.


2015 ◽  
Vol 744-746 ◽  
pp. 1298-1302 ◽  
Author(s):  
Feng Han ◽  
Xiao Feng Duan

Characterized with efficient, accurate and non-contact measurement, and the fast and three-dimensional visualization features, using 3D terrestrial laser scanning technology in track static detection has attracted widespread attention. Based on the structural characteristics of the railway line, use Geomagic software and Cyclone software in the pre-processing stage, remove the noise and redundancy, package the data after registration, get the initial line model finally. In the data extraction stage, combined with professional needs, respectively research the data extraction of track pitch and direction, and the bed section, from line, plane, and body. Which have provided a good research idea for using 3D terrestrial laser scanning technology in track static detection, acceptance, and some other aspects.


Author(s):  
C. Altuntas

Abstract. This study aims to introduce triangulation and ToF measurement techniques used in three-dimensional modelling of cultural heritages. These measurement techniques are traditional photogrammetry, SfM approach, laser scanning and time-of-flight camera. The computer based approach to photogrammetric measurement that is named SfM creates dense point cloud data in a short time. It is low-cost and very easy to application. However traditional photogrammetry needs a huge effort for creating 3D wire-frame model. On the other hand active measurement techniques such as terrestrial laser scanner and time-of-flight camera have also been used in three-dimensional modelling for more than twenty years. Each one has specific accuracy and measurement effectiveness. The large or small structures have different characters, and require proper measurement configurations. In this study, after these methods are introduced, their superior and weak properties in cultural heritage modelling to make high accuracy, high density and labour and cost effective measurement.


Sign in / Sign up

Export Citation Format

Share Document