Freshness Classification of Horse Mackerels with E-Nose System Using Hybrid Binary Decision Tree Structure

Author(s):  
Selda Güney ◽  
Ayten Atasoy

The aim of this study is to test the freshness of horse mackerels by using a low cost electronic nose system composed of eight different metal oxide sensors. The process of freshness evaluation covers a scala of seven different classes corresponding to 1, 3, 5, 7, 9, 11, and 13 storage days. These seven classes are categorized according to six different classifiers in the proposed binary decision tree structure. Classifiers at each particular node of the tree are individually trained with the training dataset. To increase success in determining the level of fish freshness, one of the k-Nearest Neighbors (k-NN), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA) and Bayes methods is selected for every classifier and the feature spaces change in every node. The significance of this study among the others in the literature is that this proposed decision tree structure has never been applied to determine fish freshness before. Because the freshness of fish is observed under actual market storage conditions, the classification is more difficult. The results show that the electronic nose designed with the proposed decision tree structure is able to determine the freshness of horse mackerels with 85.71% accuracy for the test data obtained one year after the training process. Also, the performances of the proposed methods are compared against conventional methods such as Bayes, k-NN, and LDA.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ersen Yılmaz ◽  
Çağlar Kılıkçıer

We use least squares support vector machine (LS-SVM) utilizing a binary decision tree for classification of cardiotocogram to determine the fetal state. The parameters of LS-SVM are optimized by particle swarm optimization. The robustness of the method is examined by running 10-fold cross-validation. The performance of the method is evaluated in terms of overall classification accuracy. Additionally, receiver operation characteristic analysis and cobweb representation are presented in order to analyze and visualize the performance of the method. Experimental results demonstrate that the proposed method achieves a remarkable classification accuracy rate of 91.62%.


2014 ◽  
Vol 32 (No. 6) ◽  
pp. 538-548 ◽  
Author(s):  
A. Sanaeifar ◽  
S.S. Mohtasebi ◽  
M. Ghasemi-Varnamkhasti ◽  
H. Ahmadi ◽  
J. Lozano

Potential application of a metal oxide semiconductor based electronic nose (e-nose) as a non-destructive instrument for monitoring the change in volatile production of banana during the ripening process was studied. The proposed e-nose does not need any advanced or expensive laboratory equipment and proved to be reliable in recording meaningful differences between ripening stages. Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Soft Independent Modelling of Class Analogy (SIMCA) and Support Vector Machines (SVM) techniques were used for this purpose. Results showed that the proposed e-nose can distinguish between different ripening stages. The e-nose was able to detect a clear difference in the aroma fingerprint of banana when using SVM analysis compared with PCA and LDA, SIMCA analysis. Using SVM analysis, it was possible to differentiate and to classify the different banana ripening stages, and this method was able to classify 98.66% of the total samples in each respective group. Sensor array capabilities in the classification of ripening stages using loading analysis and SVM and SIMCA were also investigated, which leads to develop the application of a specific e-nose system by applying the most effective sensors or ignoring the redundant sensors.  


2007 ◽  
Vol 16 (01) ◽  
pp. 1-15 ◽  
Author(s):  
LI ZHANG ◽  
WEI-DA ZHOU ◽  
TIAN-TIAN SU ◽  
LI-CHENG JIAO

A new multi-class classifier, decision tree SVM (DTSVM) which is a binary decision tree with a very simple structure is presented in this paper. In DTSVM, a problem of multi-class classification is decomposed into a series of ones of binary classification. Here, the binary decision tree is generated by using kernel clustering algorithm, and each non-leaf node represents one binary classification problem. By compared with the other multi-class classification methods based on the binary classification SVMs, the scale and the complexity of DTSVM are less, smaller number of support vectors are needed, and has faster test speed. The final simulation results confirm the feasibility and the validity of DTSVM.


2014 ◽  
Vol 24 (3) ◽  
pp. 647-655 ◽  
Author(s):  
Hoai Linh Tran ◽  
Van Nam Pham ◽  
Hoang Nam Vuong

Abstract The paper presents a new system for ECG (ElectroCardioGraphy) signal recognition using different neural classifiers and a binary decision tree to provide one more processing stage to give the final recognition result. As the base classifiers, the three classical neural models, i.e., the MLP (Multi Layer Perceptron), modified TSK (Takagi-Sugeno-Kang) and the SVM (Support Vector Machine), will be applied. The coefficients in ECG signal decomposition using Hermite basis functions and the peak-to-peak periods of the ECG signals will be used as features for the classifiers. Numerical experiments will be performed for the recognition of different types of arrhythmia in the ECG signals taken from the MIT-BIH (Massachusetts Institute of Technology and Boston’s Beth Israel Hospital) Arrhythmia Database. The results will be compared with individual base classifiers’ performances and with other integration methods to show the high quality of the proposed solution


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenhao Xie ◽  
Yanhong She ◽  
Qiao Guo

Support vector machines (SVMs) are designed to solve the binary classification problems at the beginning, but in the real world, there are a lot of multiclassification cases. The multiclassification methods based on SVM are mainly divided into the direct methods and the indirect methods, in which the indirect methods, which consist of multiple binary classifiers integrated in accordance with certain rules to form the multiclassification model, are the most commonly used multiclassification methods at present. In this paper, an improved multiclassification algorithm based on the balanced binary decision tree is proposed, which is called the IBDT-SVM algorithm. In this algorithm, it considers not only the influence of “between-classes distance” and “class variance” in traditional measures of between-classes separability but also takes “between-classes variance” into consideration and proposes a new improved “between-classes separability measure.” Based on the new “between-classes separability measure,” it finds out the two classes with the largest between-classes separability measure and uses them as the positive and negative samples to train and learn the classifier. After that, according to the principle of the class-grouping-by-majority, the remaining classes are close to these two classes and merged into the positive samples and the negative samples to train SVM classifier again. For the samples with uneven distribution or sparse distribution, this method can avoid the error caused by the shortest canter distance classification method and overcome the “error accumulation” problem existing in traditional binary decision tree to the greatest extent so as to obtain a better classifier. According to the above algorithm, each layer node of the decision tree is traversed until the output classification result is a single-class label. The experimental results show that the IBDT-SVM algorithm proposed in this paper can achieve better classification accuracy and effectiveness for multiple classification problems.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2936 ◽  
Author(s):  
Xianghao Zhan ◽  
Xiaoqing Guan ◽  
Rumeng Wu ◽  
Zhan Wang ◽  
You Wang ◽  
...  

As alternative herbal medicine gains soar in popularity around the world, it is necessary to apply a fast and convenient means for classifying and evaluating herbal medicines. In this work, an electronic nose system with seven classification algorithms is used to discriminate between 12 categories of herbal medicines. The results show that these herbal medicines can be successfully classified, with support vector machine (SVM) and linear discriminant analysis (LDA) outperforming other algorithms in terms of accuracy. When principal component analysis (PCA) is used to lower the number of dimensions, the time cost for classification can be reduced while the data is visualized. Afterwards, conformal predictions based on 1NN (1-Nearest Neighbor) and 3NN (3-Nearest Neighbor) (CP-1NN and CP-3NN) are introduced. CP-1NN and CP-3NN provide additional, yet significant and reliable, information by giving the confidence and credibility associated with each prediction without sacrificing of accuracy. This research provides insight into the construction of a herbal medicine flavor library and gives methods and reference for future works.


Sign in / Sign up

Export Citation Format

Share Document