INTRA-APPLICATION ENERGY REDUCTION FOR MICROPROCESSOR LOW-POWER DESIGN

2009 ◽  
Vol 18 (01) ◽  
pp. 181-198 ◽  
Author(s):  
XIAO XIN XIA ◽  
TENG TIOW TAY

Energy consumption is one of the most important design constraints for modern microprocessors, and designers have proposed many energy-saving techniques. Looking beyond the traditional hardware low-power designs, software optimization is becoming a significant strategy for the microprocessor to lower its energy consumption. This paper describes an intra-application identification and reconfiguration mechanism for microprocessor energy reduction. Our mechanism employs a statistical sampling method during training runs to identify code sections among application that have appropriate IPC (Instructions per Cycle) values and could make contributions to program runtime energy reduction, and then profiles them to dynamically scale the voltage and frequency of the microprocessor at appropriate points during execution. In our simulation, our approach achieves energy savings by an average of 39% with minor performance degradation, compared to a processor running at a fixed voltage and speed.

Author(s):  
Tangbin Xia ◽  
Lifeng Xi ◽  
Shichang Du ◽  
Lei Xiao ◽  
Ershun Pan

In recent years, the industry's responsibility to join in sustainable manufacturing becomes huge, while innovating sustainability has been a new trend. Industrial enterprises are pursuing energy reduction to meet future needs for sustainable globalization and government legislations for green manufacturing. To run a manufacturing line in an energy-efficient manner, an energy-oriented maintenance methodology is developed. At the machine layer, the multi-attribute model (MAM) method is extended by modeling the energy attribute. Preventive maintenance (PM) intervals of each machine are dynamically scheduled according to the machine deterioration, maintenance effects, and environmental conditions. At the system layer, a novel energy saving window (ESW) policy is proposed to reduce energy for the whole line. Energy consumption interactivities, batch production characteristics, and system-layer maintenance opportunities are comprehensively considered. Real-time choice of PM adjustments is scheduled by comparing the energy savings of advanced PM and delayed PM. The results prove the energy reduction achieved by this MAM-ESW methodology. It effectively utilizes standby power, reduces energy consumption, avoids manufacturing breakdown, and decreases scheduling complexity. Furthermore, this energy-oriented maintenance framework can be applied not only in the automotive industry but also for a broader range of manufacturing domains such as the aerospace, semiconductor, and chemical industries.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 633
Author(s):  
Mirzhan Kaderzhanov ◽  
Shazim Ali Memon ◽  
Assemgul Saurbayeva ◽  
Jong R. Kim

Nowadays, the residential sector of Kazakhstan accounts for about 30% of the total energy consumption. Therefore, it is essential to analyze the energy estimation model for residential buildings in Kazakhstan so as to reduce energy consumption. This research is aimed to develop the Overall Thermal Transfer Value (OTTV) based Building Energy Simulation Model (BESM) for the reduction of energy consumption through the envelope of residential buildings in seven cities of Kazakhstan. A brute force optimization method was adopted to obtain the optimal envelope configuration varying window-to-wall ratio (WWR), the angle of a pitched roof, the depth of the overhang shading system, the thermal conductivity, and the thicknesses of wall composition materials. In addition, orientation-related analyses of the optimized cases were conducted. Finally, the economic evaluation of the base and optimized cases were presented. The results showed that an average energy reduction for heating was 6156.8 kWh, while for cooling it was almost 1912.17 kWh. The heating and cooling energy savings were 16.59% and 16.69%, respectively. The frontage of the building model directed towards the south in the cold season and north in the hot season demonstrated around 21% and 32% of energy reduction, respectively. The energy cost savings varied between 9657 to 119,221 ₸ for heating, 9622 to 36,088 ₸ for cooling.


2021 ◽  
Author(s):  
Amanda Jacqueline Yip

The increasing prevalence of climate change impacts and rising energy prices has highlighted the need to achieve deep energy savings now. To accomplish this, stricter prescriptive performance requirements for residential buildings are needed. The intent of this work is to develop a framework and policy implementation strategy to achieve an 80% reduction in Ontario residential heating energy consumption by 2030. A tiered framework of consumption targets was developed using OBC 2012 SB-12 requirements as a baseline and sample compliance packages created for each tier. Construction costs for the baseline and each tier compliance package were estimated and simple payback periods determined. Impacts of fuel escalation rates on payback periods were also considered. Significant cost premiums were found between the baseline consumption and overall 80% heating energy reduction target. Lack of experience and perceived risk were found to be the greatest barriers to achieving the overall energy reduction target. A preliminary strategy and supporting policy tools was developed, taking into consideration the observed barriers to adoption.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-8
Author(s):  
Dayane Reis ◽  
Michael Niemier ◽  
Xiaobo Sharon Hu

Data transfer between a processor and memory frequently represents a bottleneck with respect to improving application-level performance. Computing-in-memory (CiM), where logic and arithmetic operations are performed in memory, could significantly reduce both energy consumption and computational overheads associated with data transfer. This work presents a revisited study of FeFET-CiM, a CiM architecture capable of performing Boolean ((N)AND, (N)OR, X(N)OR, INV) as well as arithmetic (ADD) operations between words in memory. In this study, we employ two types of FeFET-based memory cells in the CiM architecture. Namely, the 2T+1FeFET and the 1-FeFET memory cells. The use of these two types of memory cells in the FeFET-CiM architecture is enabled by two distinct models for FeFET devices. The FeFET-CiM architecture based on 2T+1FeFETs (1FeFETs) offers an average speedup of ∼2.5X (∼1.1X) and energy reduction of ∼1.7X (∼1.4X) when compared to a SRAM baseline across 12 benchmark programs. Despite smaller speedups and energy savings enabled by 1FeFET-CiM when compared to 2T+1FeFET-CiM, 1FeFET memory arrays may offer up to ∼5.3X density improvements when compared to conventional 6T-SRAM arrays. Furthermore, 1FeFET-CiM offers significant application-level improvements when compared to a counterpart STT-CiM architecture.


2021 ◽  
Author(s):  
Amanda Jacqueline Yip

The increasing prevalence of climate change impacts and rising energy prices has highlighted the need to achieve deep energy savings now. To accomplish this, stricter prescriptive performance requirements for residential buildings are needed. The intent of this work is to develop a framework and policy implementation strategy to achieve an 80% reduction in Ontario residential heating energy consumption by 2030. A tiered framework of consumption targets was developed using OBC 2012 SB-12 requirements as a baseline and sample compliance packages created for each tier. Construction costs for the baseline and each tier compliance package were estimated and simple payback periods determined. Impacts of fuel escalation rates on payback periods were also considered. Significant cost premiums were found between the baseline consumption and overall 80% heating energy reduction target. Lack of experience and perceived risk were found to be the greatest barriers to achieving the overall energy reduction target. A preliminary strategy and supporting policy tools was developed, taking into consideration the observed barriers to adoption.


2018 ◽  
Vol 8 (1) ◽  
pp. 53-60
Author(s):  
M. Javad Dehghani ◽  
P. McManamon ◽  
A. Ataei

Abstract Office buildings are responsible for a great portion of total energy consumption. In this study, solar system based retrofitting measures such as daylighting control system (DCS), Trombe wall (TW) and photovoltaic (PV) systems are modeled to an office building located in Dayton, Ohio, United States. An energy modeling tool, eQuest is utilized to analyze the economic and environmental impacts of the proposed single retrofitting measures along with the combined measure to identify the optimized building energy reduction opportunity. Compared to the baseline energy consumption, adopting single energy efficiency measures such as PV, DCS, TW, and overhangs/fins to windows results in about 25, 10, 9, 1 percentages of energy reduction respectively. In terms of economic perspectives, overhang and fins provide the best simply payback time around 1 year. Other solar system based retrofitting measures such as TW, DCS and PV can provide economic simple payback with 1.5, 2.5, and 12 years respectively. PV turned out to be the most costly options although it provides the largest energy savings which lead to the largest CO2 reductions. Adopting the combined system along with 50 kW photovoltaic array to the rooftop results in 45 percent office building energy reduction.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1629
Author(s):  
Syed Ali Hussnain ◽  
Muhammad Farooq ◽  
Muhammad Amjad ◽  
Fahid Riaz ◽  
Zia Ur Rehman Tahir ◽  
...  

Kiln is a prime need in the ceramics industry, where energy loss is a major part which consumes about 60% production cost through thermal energy for different applications. Higher density of fired and tunnel kiln refractory material lowers the thermal diffusivity and the proper selection of fired material minimizes the energy loss along the kiln. In particular, this research analysed the results of a heat recovery system comprised of a metallic recuperator which gives around 8% energy savings in natural gas consumption. In this work, detailed power quality analysis of low-power factor motors of a tunnel kiln was carried out and a power factor improvement solution was suggested to save electrical energy with payback period of 0.8 y. The motor operating at a low-power factor consumes more reactive power which does not produce beneficial work. A low-power factor around 0.4 causes network power loss, increases in transformer loss and voltage drops. The solution with accumulative capacitance power of 148.05 uF was installed to achieve the power factor to 0.9. Flu gas analyzer was installed to monitor the range of O2 in pre-heating, oxidation, and firing zones of the kiln which should be ≥8% and 3%, respectively. Regression analysis for thermal energy consumption of a tunnel kiln is done to find the forecast thermal energy consumption. This analysis can be used to find operational efficiency, supporting decisions regarding dependent variable of thermal energy consumption and independent variable of production. This research is very helpful for the ceramics industry to mitigate the energy loss at SMEs as well as in mass production level.


2010 ◽  
Vol 15 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Bo Lei ◽  
Harry Hofmann

2004 ◽  
Vol 18 (3) ◽  
pp. 37
Author(s):  
J. Frenkil
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document