scholarly journals Thermal Analysis and Energy Efficiency Improvements in Tunnel Kiln for Sustainable Environment

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1629
Author(s):  
Syed Ali Hussnain ◽  
Muhammad Farooq ◽  
Muhammad Amjad ◽  
Fahid Riaz ◽  
Zia Ur Rehman Tahir ◽  
...  

Kiln is a prime need in the ceramics industry, where energy loss is a major part which consumes about 60% production cost through thermal energy for different applications. Higher density of fired and tunnel kiln refractory material lowers the thermal diffusivity and the proper selection of fired material minimizes the energy loss along the kiln. In particular, this research analysed the results of a heat recovery system comprised of a metallic recuperator which gives around 8% energy savings in natural gas consumption. In this work, detailed power quality analysis of low-power factor motors of a tunnel kiln was carried out and a power factor improvement solution was suggested to save electrical energy with payback period of 0.8 y. The motor operating at a low-power factor consumes more reactive power which does not produce beneficial work. A low-power factor around 0.4 causes network power loss, increases in transformer loss and voltage drops. The solution with accumulative capacitance power of 148.05 uF was installed to achieve the power factor to 0.9. Flu gas analyzer was installed to monitor the range of O2 in pre-heating, oxidation, and firing zones of the kiln which should be ≥8% and 3%, respectively. Regression analysis for thermal energy consumption of a tunnel kiln is done to find the forecast thermal energy consumption. This analysis can be used to find operational efficiency, supporting decisions regarding dependent variable of thermal energy consumption and independent variable of production. This research is very helpful for the ceramics industry to mitigate the energy loss at SMEs as well as in mass production level.

2009 ◽  
Vol 18 (01) ◽  
pp. 181-198 ◽  
Author(s):  
XIAO XIN XIA ◽  
TENG TIOW TAY

Energy consumption is one of the most important design constraints for modern microprocessors, and designers have proposed many energy-saving techniques. Looking beyond the traditional hardware low-power designs, software optimization is becoming a significant strategy for the microprocessor to lower its energy consumption. This paper describes an intra-application identification and reconfiguration mechanism for microprocessor energy reduction. Our mechanism employs a statistical sampling method during training runs to identify code sections among application that have appropriate IPC (Instructions per Cycle) values and could make contributions to program runtime energy reduction, and then profiles them to dynamically scale the voltage and frequency of the microprocessor at appropriate points during execution. In our simulation, our approach achieves energy savings by an average of 39% with minor performance degradation, compared to a processor running at a fixed voltage and speed.


This paper presents a practical solution for two existing problems in traditional electrical energy measurements. The first problem is the manual electrical billing system; so far, some countries are still adopting a manual technique with a high percentage of human errors and much complains from the consumers’ side and a lot of work from the authorities’ side. The second problem is having a low power factor at most of the domestic loads and some main commercial ones. Low power factor causes more current to flow in the network leading to an overheating of transformers and cables, and an increase of the core losses of transformers; in addition, less power factor means more burned fuel and more environment pollution. In This study, an automated solution for both problems is introduced, where two control units are added to the already existing three phase energy meters. The first unit solves the problem of manual billing by automatically calculating the monthly bill and sending monthly SMS messages to the consumers as well as authorities. The second unit solves the problem of low power factor by injecting reactive power using capacitor bank at the end load points to maintain a power factor of 0.95 at all load cases. A penalty will be added to the monthly calculated bill once the above value is violated. A prototype was implemented proving the capability of introducing both solutions using existing meters with a reasonable added cost


2021 ◽  
Author(s):  
◽  
Aleksejs Prozuments

Energy efficiency in the building stock is a substantial contributor to infrastructure sustainability. In Latvia, buildings’ thermal energy use for space heating accounts for 80 % of total building energy use in the cold season. Therefore, reducing thermal energy consumption for space heating needs through the implementation of energy efficiency measures, enforcement of local building codes and regulations can ultimately lead to cost savings for building owners and stakeholders. The present PhD Thesis introduces a methodology for evaluation of thermal energy saving potential in the long run across residential, public, and industrial building stock under various thermal energy consumption compliance scenarios. These scenarios were developed based on three different building code protocols with a 10-year forecast analysis. Evaluation of the proposed building code implementation practices and their feasibility in Latvian building stock is discussed for these buildings with regards to their long-term thermal energy savings potential.


Author(s):  
Ayman Agha ◽  
Hani Attar ◽  
Audih Alfaoury ◽  
Mohammad R. Khosravi

Background: Low power factor is regarded as one of the most dedicated issues in large scale inductive power networks, because of the lost energy in term of a reactive power. Accordingly, installing capacitors in the network improves the power factor and hence decreases the reactive power. Methods: This paper presents an approach to maximize the saving in terms of financial costs, energy resources, environmental protection, and also enhance the power system efficiency. Moreover, the proposed technique tends to avoid the penalties imposed over the electricity bill (in the case of the power factor drops below the permissible limit), by applying a proposed method that consists of two stages. The first stage determines the optimal amount of compensating capacitors by using a suggested analytical method. The second stage employs a statistical approach to assess the reduction in energy losses resulting from the capacitors placement in each of the network nodes. Accordingly, the expected beneficiaries from improving the power factor are mainly large inductive networks such as large scale factories and industrial field. A numerical example is explained in useful detail to show the effectiveness and simplicity of the proposed approach and how it works. Results: The proposed technique tends to minimize the energy losses resulted from the reactive power compensation, release the penalties imposed on electricity bills due to the low power factor. The numerical examples show that the saved cost resulted from improving the power factor, and energy loss reduction is around 10.94 % per month from the total electricity bill. Conclusion: The proposed technique to install capacitors has significant benefits and effective power consumption improvement when the cost of the imposed penalty is regarded as high. The tradeoff in this technique is between the cost of the installed capacitors and the saving gained from the compensation.


Author(s):  
K. H. Khan ◽  
M. G. Rasul ◽  
M. M. K. Khan

This paper is concerned with the feasibility study and evaluation of an energy savings opportunity in buildings energy management using co-generation coupling with thermal energy storage. Both the technical and economical feasibility is presented first for the co-generation and then compared with the co-generation using thermal energy storage. On-site co-generation with double effect absorption chiller provides a potential of at least 13% peak demand reduction and about 16% savings in energy consumption. It provides an internal rate of return (IRR) greater than 21% but saving potential is limited by the low demand of co-generated chilled water within the community of the institution. Thermal energy storage coupling with co-generation offers a simple and economically more attractive approach for maximizing the utilization of co-generated chilled water and shows 23% reduction in peak demand and 21% savings in energy consumption. It provides higher IRR, greater than 25%.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3169 ◽  
Author(s):  
Natthanon Phannil ◽  
Chaiyan Jettanasen ◽  
Atthapol Ngaopitakkul

This paper proposes the study and analysis of harmonics, energy consumption and power quality of light emitting diode (LED) lamps equipped in building lighting systems. LED lamps with external (LED MR16) and internal (LED light bulb) drivers are investigated using an experimental setup to compare the results. The power quality of both LED lamps is studied by using a power quality meter to measure the generated harmonic currents from various case studies. The case study is divided into four major cases: one LED lamp is turned on with one driver, two LED lamps are turned on using the two drivers, eight LED lamps are turned on with one driver, and eight LED lamps are turned on with the eight drivers. As harmonics are related to total power factor (PF), which affects the energy savings of the building, hence, a filtering circuit to reduce harmonic current has been designed and implemented to improve power quality and/or power factor of the system. The different cases of harmonic filter insertion at the input of an LED lamp’s driver are discussed and then compared with a lighting standard to show the effectiveness of the passive filtering technique used in the studied system. In addition, the obtained result can be applied to both newly built and retrofitted buildings that aim to use LED technology to increase energy efficiency and decrease energy costs, and could be a helpful guide for end-users and manufacturers in addressing and developing LED issues.


This paper presents an automatic power factor correction unit which reduces system power loss and improves system performance by increasing the efficiency. Power wastage, now a days, is a global issue and hence proposed unit provides cost and energy effective solution. The increased use of inductive loads results in poor power factor in various residential locations. Therefore, a need to enhance the power factor of system increases in a present scenario and power factor can easily be improved by employing suitable techniques of power factor correction. The proposed technique improves the power factor and restores its value close to unity for efficient operation. The increased power factor reduces the system losses which in turn improves the voltage at load end. The corrected power factor also enhances the load carrying capability of an entire network. The proposed technique to improve the power factor, monitors the energy consumption continuously and automatically improves the power factor. The proposed technique discussed in this paper is possible with the help of 8051 microcontroller. The 8051 microcontroller senses time-variant values i.e. line voltage and line current from the system and these time variant values are further utilized to obtain phase angle and corresponding power factor. These two time variant values are calibrated properly to obtain the desired power factor. It also determines the range of power factor and depending on the power factor, it incorporates the capacitor in shunt across the load which in turn improves the power factor. The power factor correction device is designed and tested under load conditions and it is found that the power factor value is increased from 0.71 to 0.96. The average savings in energy consumption is also found to be 1.5% for load used for this proposed technique. There is significant saving in energy cost due to compensation of reactive power.


Author(s):  
E. Grover-Silva ◽  
D. A. McKahn ◽  
D. Weisbord

We present a methodology to assess the technical feasibility of building thermal energy reduction strategies from an architecturally diverse building stock that is not metered. While carbon emissions forecasting efforts are typically the domain of planning and policy, the process detailed here can inform institutional decision-making relative to investments in renewable energy, infrastructure, and offsets to further reduce carbon footprint. As a case study, we estimated the Smith College campus building thermal energy losses, an analysis which informed our Sustainability and Climate Action Plan [1]. Due to building specific physical constraints and planned renovations, different thermal envelope improvement scenarios were then considered to estimate the heating energy reduction potential of these envelope improvements. The current total heating energy consumption from 79 of our campus buildings was found to be 57,000 MMBTU/yr. Across the three building categories with minimal existing insulation and poor sealing conditions, the nominal annual thermal energy loss per square foot ranged from 27,000–37,000 BTU/ft2. Should envelope improvements be made targeting a 5 year simple payback, this annual thermal energy loss would be reduced by 40% to 34,000 MMBTU/yr. More extensive and less cost effective envelope improvements suggest further energy reductions approaching 30,000 MMBTU/yr (between 13,000–23,000 BTU/ft2/yr depending upon the building type).


2021 ◽  
Vol 13 (14) ◽  
pp. 8064
Author(s):  
Ana Paola Vargas ◽  
Leon Hamui

High energy consumption as a result of an inefficient design has both economic and environmental repercussions throughout the life cycle of a building. In Mexico, the residential sector is the third-largest final energy consumer, therefore improving the performance of existing buildings is considered an effective method in achieving energy savings. Moreover, in Mexico warm climate regions predominate, which impacts energy consumption. This article examines a linked, single-family house located in the hot-humid climate city of Villahermosa, Tabasco (México). DesignBuilder software was used to conduct the thermal energy performance simulation of the existing building (base case) and to evaluate the energy-saving potentials by implementing different passive design strategies. As a result, the annual electricity consumption of the base case decreased a maximum of 2.0% with the passive design strategy in exterior windows, 4.9% in walls and, 13.7% reduction in roofs, the latter being the enclosure with the greatest reduction achieved. Nevertheless, a final adaptation proposal with the passive design strategies, whose results represented the highest energy savings, accomplished a total reduction of 23.5% with a payback period of 5.8 years.


2010 ◽  
Vol 16 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Darius Pupeikis ◽  
Arūnas Burlingis ◽  
Vytautas Stankevičius

By introduction of intermittent heating of building we can reduce the thermal energy consumption for heating. But it requires the additional power of heating system. It is determined that the most effective solution for energy savings is to enlarge the heating power approximately by 50% for most of buildings. The simulation has showed that for buildings with a medium thermal inertia (time constant τ = 144 h) the expenses by employing the intermittent heating (reduced temperature period: 12 h on working days and 48 h at weekends), pays back after one year. By designing the heating system we must pay attention to thermal inertia of building. Our research showed that for various thermal inertias of building, the adequate modes of intermittent heating must be chosen. Santrauka Šildant pastata, esant papildomai šiluminei galiai, galima sumažinti sunaudojamos šilumines energijos. Nustatyta, kad papildomos šilumines galios (+50 %) sanaudos, siekiant pagreitinti temperatūros padidinima vidutinio masyvumo (τ = 144 h) pastatu patalpose ir taikant protarpini šildyma (12 h darbo dienomis ir 48 h savaitgaliais), atsiperka po vieneriu metu. Projektuojant reikia atsižvelgti i pastato paskirti, masyvuma ir šildymo sistemos galia, siekiant sutaupyti šilumines energijos bei gauti ekonomine nauda, taikant protarpini šildyma. Tyrimai parode, kad ivairaus masyvumo pastatams turi būti taikomi atitinkami protarpinio šildymo periodai.


Sign in / Sign up

Export Citation Format

Share Document