SELECTIVE HARMONIC ELIMINATION NON-SYMMETRICAL BIPOLAR PULSE WIDTH MODULATION TECHNIQUE: ANALYSIS AND EXPERIMENTAL VERIFICATION

2010 ◽  
Vol 19 (03) ◽  
pp. 719-731 ◽  
Author(s):  
MOHAMED S. A. DAHIDAH

Selective harmonic elimination pulse width modulation (SHE-PWM) techniques offer a tight control of the harmonic spectrum of a given voltage waveform generated by a power electronic converter along with a low number of switching transitions. These optimal switching transitions can be calculated through Fourier theory, and for a number of years quarter-wave and half-wave symmetries have been assumed when formulating the problem. It is shown recently that symmetry requirements can be relaxed as a constraint. This changes the way the problem is formulated and different solutions can be found without a compromise. This paper reports solutions to the switching transitions of a bipolar SHE-PWM when both the quarter- and half-wave symmetries are abolished. Selected simulation and experimental results are reported to show the effectiveness of the proposed method.

2014 ◽  
Vol 573 ◽  
pp. 3-6
Author(s):  
S. Dhayanandh ◽  
S. Manoharan

- The emergence of multilevel inverters has been in increase since the last decade. These new types of converters are suitable for high voltage and high power application due to their ability to synthesize waveforms with better harmonic spectrum. Numerous topologies have been introduced and widely studied for utility and induction billet applications. In this paper, proposed a Modified Multilevel Inverter (MMI) is eleven Levels. This proposed MMI consists of less number of switches to attain eleven levels when compared to the traditional cascaded multilevel inverter to attain the same level. As a result, voltage current stress across switches gets reduced, so that power loss gets reduced in the system. Secondly, an effective pulse width modulation (PWM) approach that can be utilized successfully with high control accuracy is combination of selective harmonic elimination and pulse width modulation (SHEPWM).This technique offers many advantages other PWM techniques including direct control over output waveform harmonics, and the ability to eliminate third, fifth and seventh order harmonics.


2021 ◽  
Author(s):  
Baharuddin Ismail ◽  
Muzamir Isa ◽  
M. Z. Aikhsan ◽  
M. N. K. H. Rohani ◽  
C. L. Wooi ◽  
...  

Author(s):  
Tao Jing ◽  
Alexander Maklakov ◽  
Andrey Radionov ◽  
Sergei Baskov ◽  
Aleksandra Kulmukhametova

<span>This paper presents a hybrid pulse width modulation (HPWM) strategy based on different switching patterns of selective harmonic elimination pulse width modulation (SHEPWM) for the three-level neutral point clamped (3L-NPC) converter. Specific low-order harmonics can be eliminated by SHEPWM at low switching frequency, while the remaining high-order harmonics can be selected to be simply filtered by additional hardware. Large oscillation waveform usually occurs in the transition instant between two diverse modulation situations, therefore switching between distinct switching patterns can be problematic if no effective means is taken, especially when the effect of smooth and fast transition at any time is considerable. A universal and valid control strategy, which maintains the high-quality output voltage and current, is proposed and implemented in this paper to address this issue. Simulation results obtained from MATLAB/SIMULINK are presented to analyze the performance and validate the feasibility and effectiveness of this control scheme.</span>


Sign in / Sign up

Export Citation Format

Share Document