BANDGAP VOLTAGE REFERENCE IC FOR HV AUTOMOTIVE APPLICATIONS WITH PSEUDO-REGULATED BIAS AND SERVICE REGULATOR

2013 ◽  
Vol 22 (01) ◽  
pp. 1250069 ◽  
Author(s):  
SERGIO SAPONARA ◽  
LUCA FANUCCI ◽  
TOMMASO BALDETTI ◽  
ENRICO PARDI

The paper presents a bandgap voltage reference (BGR) implemented in TSMC 0.25 μm BCD technology for an automotive application. To withstand a car's battery large voltage variations, from 5 V to 40 V, the circuit features an embedded pseudo-regulator providing a stable bias current for the bandgap core. High-voltage (HV) MOS count has been kept low thus allowing the design of a compact BGR with an area of 0.118 mm2. The BGR has been designed to operate in automotive extended temperature range (-40°C to 150°C) and it provides a stable voltage of 1.21 V, which is also used as reference for a cascade 3.7 V linear regulator. Measurements carried on fabricated IC samples prove the effectiveness of the BGR design in terms of supported input voltage variations and operating temperature range, temperature drift, line regulation and PSRR performance.

Author(s):  
Ruhaifi Abdullah Zawawi ◽  
Nuha A. Rhaffor ◽  
Shukri Korakkottil Kunhi Mohd ◽  
Sofiyah Sal Hamid ◽  
Asrulnizam Abd Manaf ◽  
...  

2015 ◽  
Vol 24 (08) ◽  
pp. 1550125 ◽  
Author(s):  
Sergio Saponara

This work presents a bandgap voltage reference (BGR) integrated in 0.25-μm bipolar-CMOS-DMOS (BCD) technology. The BGR circuit generates a reference voltage of 1.22 V. It is able to withstand large supply voltage variations of vehicle applications from 4.5 V, e.g., in case of cranking, up to 60-V, maximum value in case of emerging 48-V battery systems for hybrid and electrical vehicles. The circuit has an embedded high-voltage (HV) pseudo-regulator block that provides a more stable internal supply rail for a cascaded low-voltage bandgap core. HV MOS are used only in the pre-regulator block thus allowing the design of a BGR with compact size. The proposed architecture permits to withstand large input voltage variations with a temperature drift of a hundred of ppm/°C, a line regulation (LR) of few mV/V versus the external supply voltage and a power supply rejection ratio (PSRR) higher than 90 dB.


2019 ◽  
Vol 28 (13) ◽  
pp. 1950214
Author(s):  
Ze-kun Zhou ◽  
Hongming Yu ◽  
Yue Shi ◽  
Zhuo Wang ◽  
Bo Zhang

A high-precision bandgap voltage reference (BGR) with a novel curvature-compensation scheme is proposed in this paper. The temperature coefficient (TC) can be automatically optimized with a built-in adaptive curvature-compensation technique, which is realized in a digitization control way. An exponential curvature-compensation method is first adopted to reduce the TC in a certain degree, especially in low temperature range. Then, the temperature drift of BGR in higher temperature range can be further minimized by dynamic zero-temperature-coefficient point tracking (ZTCPT) with temperature changes. With the help of proposed adaptive signal processing, the output voltage of BGR can approximately maintain zero TC in a wider temperature range. Verification results of the BGR proposed in this paper, which is implemented in 0.35-[Formula: see text]m BiCMOS process, illustrate that the TC of 1.4[Formula: see text]ppm/∘C is realized under the power supply voltage of 3[Formula: see text]V and the power supply rejection of the proposed circuit is [Formula: see text][Formula: see text]dB without any filter capacitor.


2018 ◽  
Vol 3 (6) ◽  
pp. 213
Author(s):  
A V Popova ◽  
V M Kisel ◽  
A Yu Malyavina ◽  
A S Bakerenkov ◽  
Yu R Shaltaeva

.


2012 ◽  
Vol 542-543 ◽  
pp. 631-634
Author(s):  
Xing Wang ◽  
Lin Hua Piao ◽  
Quan Gang Yu

The nozzle array structure fluidic gyroscope’s zero temperature compensation was researched. The fluidic gyroscope’s temperature characteristic was analyzed in the sensitive element and two zero temperature compensation methods were compared. Then, the software compensation method was used, which based on the Single chip microcomputer technology and realized temperature compensation for the gyroscope output signal. The results show that after the compensation, the gyroscope’s zero drift decreases from ≤1.3mV/°C to ≤0.1mV/°C and operating temperature range increases from normal temperature to -40°C~+60°C. Therefore, the fluidic gyroscope has the advantage of low zero drift and width operating temperature range after the zero temperature compensation, which provides the convenience for the production and application.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000106-000111 ◽  
Author(s):  
R.C. Murphree ◽  
S. Ahmed ◽  
M. Barlow ◽  
A. Rahman ◽  
H.A. Mantooth ◽  
...  

Abstract This paper establishes the first linear regulator in a 1.2 μm CMOS silicon carbide (SiC) process. The linear regulator presented consists of a SiC error amplifier and a pass transistor which has a W/L = 70,000 μm / 1.2 μm. The feedback loop is internal and the frequency compensation network is a combination of internal and external components. As a result of potential process variation in this emerging technology, the voltage reference used at the negative input terminal of the error amplifier has been made external. With an input voltage of 20 V to 30 V, the voltage regulator is able to provide a 15 V output and a continuous load current of 100 mA at temperatures ranging from 25 °C to over 400 °C. At a temperature of 400 °C, testing of the fabricated circuit has shown line regulation of less than 4 mV/V. Under the same test conditions, a load regulation of less than 420 mV/A is achieved.


2020 ◽  
Vol 8 (31) ◽  
pp. 11501-11511 ◽  
Author(s):  
Rui Chen ◽  
Xiubin Xu ◽  
Siyu Peng ◽  
Junmin Chen ◽  
Danfeng Yu ◽  
...  

2017 ◽  
Vol 5 (19) ◽  
pp. 9090-9096 ◽  
Author(s):  
Liang Chang ◽  
Wei Wei ◽  
Kai Sun ◽  
Yun Hang Hu

Na@C electrodes can operate from −10 to 55 °C and exhibit an ultrahigh areal capacitance up to 1.14 F cm−2.


Sign in / Sign up

Export Citation Format

Share Document