A High-Precision Bandgap Voltage Reference with Automatic Curvature-Compensation Technique

2019 ◽  
Vol 28 (13) ◽  
pp. 1950214
Author(s):  
Ze-kun Zhou ◽  
Hongming Yu ◽  
Yue Shi ◽  
Zhuo Wang ◽  
Bo Zhang

A high-precision bandgap voltage reference (BGR) with a novel curvature-compensation scheme is proposed in this paper. The temperature coefficient (TC) can be automatically optimized with a built-in adaptive curvature-compensation technique, which is realized in a digitization control way. An exponential curvature-compensation method is first adopted to reduce the TC in a certain degree, especially in low temperature range. Then, the temperature drift of BGR in higher temperature range can be further minimized by dynamic zero-temperature-coefficient point tracking (ZTCPT) with temperature changes. With the help of proposed adaptive signal processing, the output voltage of BGR can approximately maintain zero TC in a wider temperature range. Verification results of the BGR proposed in this paper, which is implemented in 0.35-[Formula: see text]m BiCMOS process, illustrate that the TC of 1.4[Formula: see text]ppm/∘C is realized under the power supply voltage of 3[Formula: see text]V and the power supply rejection of the proposed circuit is [Formula: see text][Formula: see text]dB without any filter capacitor.

2014 ◽  
Vol 23 (08) ◽  
pp. 1450107 ◽  
Author(s):  
JUN-DA CHEN ◽  
CHENG-KAI YE

This paper presents an approach to the design of a high-precision CMOS voltage reference. The proposed circuit is designed for TSMC 0.35 μm standard CMOS process. We design the first-order temperature compensation bandgap voltage reference circuit. The proposed post-simulated circuit delivers an output voltage of 0.596 V and achieves the reported temperature coefficient (TC) of 3.96 ppm/°C within the temperature range from -60°C to 130°C when the supply voltage is 1.8 V. When simulated in a smaller temperature range from -40°C to 80°C, the circuit achieves the lowest reported TC of 2.09 ppm/°C. The reference current is 16.586 μA. This circuit provides good performances in a wide range of temperature with very small TC.


2018 ◽  
Vol 232 ◽  
pp. 04072
Author(s):  
XingGuo Tian ◽  
XiaoNing Xin ◽  
DongYang Han

In order to meet the market demand for wide temperature range and high precision bandgap voltage reference, this paper designs a bandgap reference with wide temperature range and low temperature coefficient. In this paper, the basic implementation principle of the bandgap reference is analyzed.On the basis of the traditional bandgap reference circuit structure,this design adds a trimming network and a temperature compensation network. A new Gaussian bell curve compensation technique is adopted to compensate the low temperature section, and the normal temperature section and the high temperature section respectively. Compared with the existing compensation technology, the versatility and the compensation effect is better. The designed circuit is designed and manufactured based on the Huahong HHNECGE0.35um process. The results show that the output voltage is 2.5V at 2.7V supply voltage and temperature range of -40-125°C.at typical process angle ,the temperature coefficient is 0.54618 PPm/°C,and is within 1PPm/°C at other process angles.


Author(s):  
Anass SLAMTI ◽  
Youness MEHDAOUI ◽  
Driss CHENOUNI ◽  
Zakia LAKHLIAI

<span lang="EN-US">A sub-1V opamp based β-multiplier CMOS bandgap voltage reference (BGVR) with high power supply rejection ratio (PSRR) and low temperature coefficient (TC) is proposed in this paper. A current mode regulator scheme is inserted to isolate the supply voltage of the operational amplifier (opamp) and the supply voltage of the BGVR core from the supply voltage source in order to reduce ripple sensitivity and to achieve a high PSRR. The proposed circuit is designed and simulated in 0.18-μm standard CMOS technology. The proposed voltage reference delivers an output voltage of 634.6mV at 27°C. Tthe measurement temperature coefficient is 22,3ppm/°C over temperature range -40°C to 140°C, power supply rejection ratio is -93dB at 10kHz and -71dB at 1MHz and a line regulation of 104μV/V is achieved over supply voltage range 1.2V to 1.8V. The layout area of the proposed circuit is 0.0337mm<sup>2</sup>. The proposed sub-1V bandgap voltage reference can be used as an internal voltage reference in low power LDO regulators and switching regulators.</span>


2015 ◽  
Vol 24 (08) ◽  
pp. 1550125 ◽  
Author(s):  
Sergio Saponara

This work presents a bandgap voltage reference (BGR) integrated in 0.25-μm bipolar-CMOS-DMOS (BCD) technology. The BGR circuit generates a reference voltage of 1.22 V. It is able to withstand large supply voltage variations of vehicle applications from 4.5 V, e.g., in case of cranking, up to 60-V, maximum value in case of emerging 48-V battery systems for hybrid and electrical vehicles. The circuit has an embedded high-voltage (HV) pseudo-regulator block that provides a more stable internal supply rail for a cascaded low-voltage bandgap core. HV MOS are used only in the pre-regulator block thus allowing the design of a BGR with compact size. The proposed architecture permits to withstand large input voltage variations with a temperature drift of a hundred of ppm/°C, a line regulation (LR) of few mV/V versus the external supply voltage and a power supply rejection ratio (PSRR) higher than 90 dB.


2014 ◽  
Vol 989-994 ◽  
pp. 1165-1168
Author(s):  
Qian Neng Zhou ◽  
Yun Song Li ◽  
Jin Zhao Lin ◽  
Hong Juan Li ◽  
Chen Li ◽  
...  

A high-order bandgap voltage reference (BGR) is designed by adopting a current which is proportional to absolute temperature T1.5. The high-order BGR is analyzed and simulated in SMIC 0.18μm CMOS process. Simulation results show that the designed high-order BGR achieves temperature coefficient of 2.54ppm/°C when temperature ranging from-55°C to 125°C. The high-order BGR at 10Hz, 100Hz, 1kHz, 10kHz and 100kHz achieves, respectively, the power supply rejection ratio of-64.01dB, -64.01dB, -64dB, -63.5dB and-53.2dB. When power supply voltage changes from 1.7V to 2.5V, the output voltage deviation of BGR is only 617.6μV.


2012 ◽  
Vol 503 ◽  
pp. 12-17
Author(s):  
Qiang Li ◽  
Xiao Yun Tan ◽  
Guan Shi Wang

The reference is an important part of the micro-gyroscope system. The precision and stability of the reference directly affect the precision of the micro-gyroscope. Unlike the traditional bandgap reference circuit, a circuit using a temperature-dependent resistor ratio generated by a highly-resistive poly resistor and a diffusion resistor in CMOS technology is proposed in this paper. The complexity of the circuit is greatly reduced. Implemented with the standard 0.5μm CMOS technology and 9V power supply voltage, in the range of -40~120°C, the temperature coefficient of the proposed bandgap voltage reference can achieve to about 1.6 ppm/°C. The PSRR of the circuit is -107dB.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850128 ◽  
Author(s):  
R. Nagulapalli ◽  
K. Hayatleh ◽  
Steve Barker ◽  
Sumathi Raparthy ◽  
Nabil Yassine ◽  
...  

This paper exploits the CMOS beta multiplier circuit to synthesize a temperature-independent voltage reference suitable for low voltage and ultra-low power biomedical applications. The technique presented here uses only MOS transistors to generate Proportional To Absolute Temperature (PTAT) and Complimentary To Absolute Temperature (CTAT) currents. A self-biasing technique has been used to minimize the temperature and power supply dependency. A prototype in 65[Formula: see text]nm CMOS has been developed and occupies 0.0039[Formula: see text]mm2, and at room temperature, it generates a 204[Formula: see text]mV reference voltage with 1.3[Formula: see text]mV drift over a wide temperature range (from [Formula: see text]40[Formula: see text]C to 125[Formula: see text]C). This has been designed to operate with a power supply voltage down to 0.6[Formula: see text]V and consumes 1.8[Formula: see text]uA current from the supply. The simulated temperature coefficient is 40[Formula: see text]ppm/[Formula: see text]C.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750127 ◽  
Author(s):  
Gongyuan Zhao ◽  
Mao Ye ◽  
Yiqiang Zhao ◽  
Kai Hu ◽  
Ruishan Xin

This paper presents a bandgap voltage reference (BGR), utilizing high order curvature-compensated technique with the temperature dependent resistor. Based on an improved error amplifier, [Formula: see text]80[Formula: see text]dB power supply rejection (PSR) @1[Formula: see text]kHz is achieved without additional complicated circuits. The circuit is fabricated in a standard [Formula: see text]m CMOS process, consuming 50[Formula: see text][Formula: see text]A at 25[Formula: see text]C with a supply voltage of 3.3[Formula: see text]V. Simulation results show that the proposed BGR can achieve a temperature coefficient as low as 1.18[Formula: see text]ppm/[Formula: see text]C over the temperature range from [Formula: see text]C to 120[Formula: see text]C. Monte Carlo simulation and Experimental Results validate the design.


2013 ◽  
Vol 22 (01) ◽  
pp. 1250069 ◽  
Author(s):  
SERGIO SAPONARA ◽  
LUCA FANUCCI ◽  
TOMMASO BALDETTI ◽  
ENRICO PARDI

The paper presents a bandgap voltage reference (BGR) implemented in TSMC 0.25 μm BCD technology for an automotive application. To withstand a car's battery large voltage variations, from 5 V to 40 V, the circuit features an embedded pseudo-regulator providing a stable bias current for the bandgap core. High-voltage (HV) MOS count has been kept low thus allowing the design of a compact BGR with an area of 0.118 mm2. The BGR has been designed to operate in automotive extended temperature range (-40°C to 150°C) and it provides a stable voltage of 1.21 V, which is also used as reference for a cascade 3.7 V linear regulator. Measurements carried on fabricated IC samples prove the effectiveness of the BGR design in terms of supported input voltage variations and operating temperature range, temperature drift, line regulation and PSRR performance.


Sign in / Sign up

Export Citation Format

Share Document