A NOTE ON THE TRANSFORMATION OF GROUNDED INDUCTORS TO FLOATING INDUCTORS USING OFA AND FCCII

2013 ◽  
Vol 22 (02) ◽  
pp. 1250086
Author(s):  
AHMED M. SOLIMAN

Recently this author published a paper1 discussing the transformation of grounded inductors to floating inductors using operational floating amplifier (OFA) or floating current conveyor (FCCII). The author classified the paper as a partially review paper as stated in the abstract and in the introduction of Ref. 1 The author states in the abstract that: It is well known that a floating inductor circuit is realized from a grounded inductor circuit by replacing the operational amplifier by a floating operational transconductance amplifier. This idea is extended to transform current conveyor grounded inductors to floating inductors by replacing the current conveyor by the recently introduced floating current conveyor.

2011 ◽  
Vol 20 (02) ◽  
pp. 243-262 ◽  
Author(s):  
AHMED M. SOLIMAN

It is well known that a floating inductor circuit is realized from a grounded inductor circuit by replacing the operational amplifier by a floating operational transconductance amplifier. This idea is extended to transform current conveyor grounded inductors to floating inductors by replacing the current conveyor by the recently introduced floating current conveyor. Several examples are considered and simulation results are given to support the theory. Although the paper is partially a review in nature it includes several new realizations of floating inductors.


Author(s):  
Bhawna Aggarwal ◽  
◽  
Rachit Bansal ◽  
Palak Agarwal ◽  
Shweta Gautam ◽  
...  

In this paper, practical circuits for operational transresistance amplifier (OTRA) realizable in lab using commercial ICs have been designed and proposed. 3 structures based on operational amplifier (OPAMP-LM741), operational transconductance amplifier (OTA-CA3080) and current conveyors II (AD844) have been proposed. In these proposed designs, conditions to mimic the current-voltage behavior of OTRA have been formulated using active and passive components. Moreover, these components are also used to achieve flexibility in transresistance gain of implemented OTRA. The behavior of the proposed OTRA structures have been validated using LTSPICE. Furthermore, to represent practical usability of these designs oscillator circuit have been designed and implemented on software and experimentally also on bread board. All the results prove the OTRA operation of the designed circuits and their usability in the practical environment.


2003 ◽  
Vol 26 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Muhammad Taher Abuelma'atti ◽  
Sa'ad Muhammad Al-Shahrani

A novel circuit is presented for realizing a sinusoidal oscillator. The proposed circuit, developed through a true synthesis approach, uses one current-feedback operational amplifier (CFOA), one operational transconductance amplifier (OTA), three grounded capacitors and one floating resistor. The proposed circuit enjoys several attractive features. Practical results, in excellent agreement with the presented theory, are included.


1995 ◽  
Vol 17 (4) ◽  
pp. 257-260
Author(s):  
Muhammad Taher Abuelma'atti ◽  
Abdulrahman Khalaf Al-Ali ◽  
Abdulrafeeq Abdulshakoor

A new programmable second-generation current-conveyor is proposed. The proposed circuit uses a commercially available second-generation current-conveyor and one operational transconductance amplifier. Simulation results confirming the presented theory are included.


The paper presents a sub-volt design of highly precise second-generation current conveyor (CCII  ) using Miller compensated Operational Transconductance Amplifier (OTA) designed using bulk driven quasi-floating gate (BDQFG) MOSFET. The bulk-driven approach help in working of proposed CCII  at low supply voltage. Moreover, followed BDQFG technique results in improves the transconductance and frequency response of the circuit over standalone bulk-driven technique. The proposed CCII  operates at  0.4V. Other performances which encourage its wide applicability are in terms of high current range and high bandwidth. The analysis of proposed current conveyor is carried in 0.18 m twin-well CMOS technology using HSpice


2019 ◽  
Vol 25 (6) ◽  
pp. 28-34 ◽  
Author(s):  
Jan Dvorak ◽  
David Kubanek ◽  
Norbert Herencsar ◽  
Aslihan Kartci ◽  
Panagiotis Bertsias

This paper presents a design of the controllable emulator of the FOC (Fractional-Order Capacitor) and its application. The circuit is based on 5th-order RC topology (type Foster I), where the passive elements in the topology are replaced by electronically adjustable components. The proposed emulator is based on OTA (Operational Transconductance Amplifier) and VDCC (Voltage Differencing Current Conveyor). The electronically controllable resistors are implemented by OTAs. The electronically tunable capacitors are implemented using capacitance multipliers, which employ VDCCs. The proposed structure provides the electronic control of the order and electronic shifting of the frequency band of the approximation validity. The proposed FOC emulator is also used for fractional-order filter design. The proposed circuits are verified using PSpice simulations.


Sign in / Sign up

Export Citation Format

Share Document