A New Interleaved Bidirectional Zero Voltage Switching DC/DC Converter with High Conversion Ratio

2017 ◽  
Vol 26 (06) ◽  
pp. 1750105 ◽  
Author(s):  
Ebrahim Babaei ◽  
Zahra Saadatizadeh ◽  
Behnam Mohammadi Ivatloo

In this paper, a new interleaved nonisolated bidirectional zero voltage switching (ZVS) dc–dc converter by using one three-windings coupled inductor is proposed. The proposed topology can provide high step-up and high step-down conversion ratios for boost and buck operations, respectively. Moreover, because of interleaving, the proposed converter has low input current ripple at low voltage side in both buck and boost operations. The proposed converter uses lower number of switches to have bidirectional power flow in comparison with other interleaved bidirectional converters. All used switches in the proposed converter are turned on under ZVS. The advantages of the proposed converter in comparison with the conventional interleaved converters are included in the capability of bidirectional power flow, ZVS operation for all switches and high step-up and high step-down voltage gain for boost and buck operations. In this paper, the proposed converter is analyzed completely and all equations of components are extracted as well as the ZVS conditions of all switches. Moreover, a comprehensive comparison between the proposed converter and conventional topologies is presented. To verify the accuracy performance of the proposed converter, the experimental results are given.

This manuscript presents a novel high gain, high efficiency Soft-switching high step-up DC/DC converter for battery-operated vehicles. The high step-up converter can transfer the power flow from the small voltage to high voltage. The conventional two input inductor hard switched non-isolated DC-DC converter improved with an additional auxiliary cell to attain the Zero voltage switching, due to obtaining the softswitching the efficiency may improve and reduces the stress across the main switches. The isolated converters are used as a transformer to attain high gain, whereas in the proposed converter obtains the high gain without a transformer and contains the high efficiency in the step-up mode of operation. The main aim of the converter is to attain the Zero voltage switching without using any additional auxiliary switches. In this paper, the input voltage applied as 30V, and the obtained output voltage is fifteen times to the applied voltage, which is 450V and the output power 850W. This paper mainly presents the theoretical analysis of converter operation and the evaluation of the simulation results validated with the theoretical analysis.


Mathematical analysis and stability prediction of soft switched isolated dc-dc converter is presented in this paper. Half bridge dc-dc converter is an attractive topology for low voltage applications due to its simplicity, lower cost, improved reliability and enhanced dynamic performance. Both power semiconductor switches of the proposed isolated converter operate asymmetrically under Zero Voltage Switching (ZVS) to achieve high efficiency and low voltage stress. Furthermore, the ringing resulted from the oscillation between the transformer leakage inductance and the junction capacitance of two switches is eliminated. Conversion efficiency is also improved by providing synchronous rectifier with very small output filter. The operating principle, state space analysis and control strategy of proposed converter is explained with small signal model. Experimental results are presented to explain the zero voltage switching capability and stability features of proposed converter.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 102
Author(s):  
Abdulhakeem Alsaleem ◽  
Faleh Alsakran ◽  
Marcelo Godoy Simões

This paper presents a high step up, current fed, interleaved, isolated DC–DC converter with voltage multipliers and ZVS (zero voltage switching). The converter provides zero voltage switching for all active switches and provides a high step up voltage gain that is suitable for very low voltage source applications, such as PV and other renewable sources. In addition, this converter allows the utilization of very low voltage stress switches and diodes. It reduces the current stress by interleaving the input current, and reduces the voltage stress by utilizing a half bridge based multiplier cell integrated configuration at the output voltage while providing high frequency galvanic isolation. The isolation is achieved through the use of 1:1 transformers which are easier to design, and the need for a high turns ratio is absent in this converter. The main theory of operation and the design guideline are presented, as is a laboratory prototype, all to validate the concept.


2016 ◽  
Vol 9 (4) ◽  
pp. 719-727 ◽  
Author(s):  
Guipeng Chen ◽  
Yan Deng ◽  
Xiangning He ◽  
Yousheng Wang ◽  
Jiangfeng Zhang

Sign in / Sign up

Export Citation Format

Share Document