A Novel Design and FPGA Implementation of Filters Adapted Using LMS Variants

2018 ◽  
Vol 27 (08) ◽  
pp. 1850125
Author(s):  
Sakshi ◽  
Ravi Kumar

Adaptive filters have wide range of applications in areas such as echo or interference cancellation, prediction and system identification. Due to high computational complexity of adaptive filters, their hardware implementation is not an easy task. However, it becomes essential in many cases where real-time execution is needed. This paper presents the design and hardware implementation of a variable step size 40 order adaptive filter for de-noising acoustic signals. To ensure an area efficient implementation, a novel structure is being proposed. The proposed structure eliminates the requirement of extra registers for storage of delayed inputs thereby reducing the silicon area. The structure is compared with direct-form and transposed-form structures by adapting the filter coefficients using four different variants of the least means square (LMS) algorithm. Subsequently, the filters are implemented on three different field programmable gate arrays (FPGAs) viz. Spartan 6, Virtex 6 and Virtex 7 to find out the best device family that can be used to implement an Adaptive noise canceller (ANC) by comparing speed, power and area utilization. The synthesis results clearly reveal that ANC designed using the proposed structure has resulted in a reduction in silicon area without incurring any significant overhead in terms of power or delay.

2011 ◽  
Vol 268-270 ◽  
pp. 1168-1172
Author(s):  
Qing Feng Wang ◽  
Chuan Lin

A new variable step size LMS algorithm (CoLMS algorithm) based on two cooperative adaptive filters was proposed. In the CoLMS algorithm, the step size of each component filter was adjusted according to the comparison result of the two component filters’ performance at current stage. And the output of the better component adaptive filter was chosen as that of the overall adaptive filter. The CoLMS algorithm is not sensitive to the magnitude of the output noise and has a good tracking ability in the stationary or slowly changed environment. In order to further improve the tracking ability of CoLMS in abruptly changed environment, a modified CoLMS algorithm is also presented. The efficiency of the new algorithms is verified by the simulation results in system identification under the noises of different magnitudes.


2014 ◽  
Vol 602-605 ◽  
pp. 3474-3477
Author(s):  
Hui Zhi Zou

MAI influence, using a low computational complexity variable step size LMS algorithm based on the traditional algorithm to find the optimal weight on, and make estimates for the magnitude, thereby offsetting the presence of MAI and estimates for spread spectrum communication system struck a balance between the consideration to be paid for MAI. The improved algorithm reduces the computational complexity of each level, the simulation results also show that the method has better performance.


2004 ◽  
Vol 17 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Karen Egiazarian ◽  
Pauli Kuosmanen ◽  
Ciprian Bilcu

Due to its simplicity the adaptive Least Mean Square (LMS) algorithm is widely used in Code-Division Multiple access (CDMA) detectors. However its convergence speed is highly dependent on the eigen value spread of the input covariance matrix. For highly correlated inputs the LMS algorithm has a slow convergence which require long training sequences and therefore low transmission speeds. Another drawback of the LMS is the trade-off between convergence speed and steady-state error since both are controlled by the same parameter, the step-size. In order to eliminate these drawbacks, the class of Variable Step-Size LMS (VSSLMS) algorithms was introduced. In this paper, we study the behavior of some algorithms belonging to the class of VSSLMS for training based multiuser detection in a CDMA system. We show that the proposed Complementary Pair Variable Step-Size LMS algorithms highly increase the speed of convergence while reducing the trade-off between the convergence speed and the output error.


Author(s):  
T. Gowri ◽  
Rajesh Kumar P. ◽  
D.V.R. Koti Reddy

It is very important in remote cardiac diagnosis to extract pure ECG signal from the contaminated recordings of the signal. When recording the ECG signal in the laboratory, the signal is affected by numerous artifacts. Varies artifacts generally degrades the signal quality are PLI, EM, MA and EM. In addition to these, the channel noise also added when transmitting signal from remote location to diagnosis center for analyzing the signal. There are several approaches are used to reduce the noise present in the ECG signal. From the literature it is proven that compared to non adaptive filters, adaptive filters play vital role to trace the random changes in the corrupted signals. In this paper, we proposed efficient Variable step size leaky least mean fourth algorithm and its sign versions for reducing the complexity. These algorithms shows that it gives low steady state error due to least mean fourth and fast convergence rate that is it tracks the input signal quickly because of its variable step size is high at initial iterations of signal compared to the LMS algorithm. The performance of the algorithm is evaluated using SNR, frequency spectrum, MSE, misadjustment and convergence characteristics.


Author(s):  
Alberto Carini ◽  
Markus V. S. Lima ◽  
Hamed Yazdanpanah ◽  
Simone Orcioni ◽  
Stefania Cecchi

2019 ◽  
Vol 67 (6) ◽  
pp. 405-414 ◽  
Author(s):  
Ningning Liu ◽  
Yuedong Sun ◽  
Yansong Wang ◽  
Hui Guo ◽  
Bin Gao ◽  
...  

Active noise control (ANC) is used to reduce undesirable noise, particularly at low frequencies. There are many algorithms based on the least mean square (LMS) algorithm, such as the filtered-x LMS (FxLMS) algorithm, which have been widely used for ANC systems. However, the LMS algorithm cannot balance convergence speed and steady-state error due to the fixed step size and tap length. Accordingly, in this article, two improved LMS algorithms, namely, the iterative variable step-size LMS (IVS-LMS) and the variable tap-length LMS (VT-LMS), are proposed for active vehicle interior noise control. The interior noises of a sample vehicle are measured and thereby their frequency characteristics. Results show that the sound energy of noise is concentrated within a low-frequency range below 1000 Hz. The classical LMS, IVS-LMS and VT-LMS algorithms are applied to the measured noise signals. Results further suggest that the IVS-LMS and VT-LMS algorithms can better improve algorithmic performance for convergence speed and steady-state error compared with the classical LMS. The proposed algorithms could potentially be incorporated into other LMS-based algorithms (like the FxLMS) used in ANC systems for improving the ride comfort of a vehicle.


2008 ◽  
Vol 88 (3) ◽  
pp. 733-748 ◽  
Author(s):  
Márcio Holsbach Costa ◽  
José Carlos Moreira Bermudez

Sign in / Sign up

Export Citation Format

Share Document