LOOKING FORWARD TO THE INTELLIGENT ELECTRICAL MACHINE: ELECTRONICS AND MACHINES COMBINE THEIR ABILITIES

1995 ◽  
Vol 05 (01) ◽  
pp. 45-63
Author(s):  
DIETRICH NAUNIN

Electrical machines, more than 150 years old, have long been distinguished according to their mechanical structure and frequencies of their supply voltage (or current). This is not true any more after the electronic revolution. Since the fast development in power electronics as well as in control electronics these electronics can give any motor any desired speed-torque characteristic and any motor can become a servodrive having a very precise position control. By implementing digital control algorithms, mainly the cascaded, the state feedback or the cascaded state feedback control, and — if necessary, in addition — adaptive control procedures which compensate the variation of system parameters in the controller, the "intelligent electrical machine" — either with the synchronous or with the induction machine — is created. It is part of mechatronics. It can be installed in modern automated systems, in robots and tool machines, in all kinds of industrial drive systems as well as in locomotives and electric cars. Also modern methods like fuzzy logic and neural networks can be used. It seems that they will not create a second revolution in the control itself, but in the application areas of drives. They add some interesting features to the intelligent electrical machine and make it even more intelligent. They could also speed up the controller design in future.

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
M. Rajchakit ◽  
P. Niamsup ◽  
T. Rojsiraphisal ◽  
G. Rajchakit

This paper studies the problem of guaranteed cost control for a class of uncertain delayed neural networks. The time delay is a continuous function belonging to a given interval but not necessary to be differentiable. A cost function is considered as a nonlinear performance measure for the closed-loop system. The stabilizing controllers to be designed must satisfy some exponential stability constraints on the closed-loop poles. By constructing a set of augmented Lyapunov-Krasovskii functionals combined with Newton-Leibniz formula, a guaranteed cost controller is designed via memoryless state feedback control, and new sufficient conditions for the existence of the guaranteed cost state feedback for the system are given in terms of linear matrix inequalities (LMIs). Numerical examples are given to illustrate the effectiveness of the obtained result.


2012 ◽  
Vol 170-173 ◽  
pp. 3334-3337
Author(s):  
Lian Hua Hu ◽  
Xiao Feng Yang

A robust reduced-order H∞ controller for the linear structures is investigated. This controller is with disturbance decoupling. First, a necessary and sufficient condition for the H∞ state feedback control problem is established. Second, based on the parametric design approach for generalized Sylvester matrix equations, we obtain a reduced-order H∞ controller for linear structures. Finally, numerical example is given to illustrate the validity of the results.


2019 ◽  
Vol 9 (2) ◽  
pp. 4030-4036 ◽  
Author(s):  
Z. R. Labidi ◽  
H. Schulte ◽  
A. Mami

In this paper, a systematic controller design for a photovoltaic generator with boost converter using integral state feedback control is proposed. It is demonstrated that the state–space feedback enables the extraction of maximum available power under variable loads. For this purpose, a control-oriented state-space model of a photovoltaic array connected to a DC load by a boost converter is derived. This model is then linearized by one working point, but no further simplifications are made. The design-oriented model contains the dynamics of PV generator, boost converter, and the load. The controller design is based on the augmented model with an integral component. The controller is validated by a detailed plant model implemented in Simscape. The robustness of the controller with variable solar irradiation and DC load changes is demonstrated.


Author(s):  
Yasser Boussairi ◽  
Abdelmajid Abouloifa ◽  
Ibtissam Lachkar ◽  
Abdellatif Hamdoun ◽  
Chaouqi Aouadi

<span lang="EN-US">This article presents nonlinear control of wind conversion chain connected to the grid based on a permanent magnet synchronous generator. The control objectives are threefold; i) forcing the generator speed to track a varying reference signal in order to extract the maximum power at different wind speed (MPPT); ii) regulating the rectifier output capacitor voltage; iii) reducing the harmonic and reactive currents injected in the grid. This means that the inverter output current must be sinusoidal and in phase with the AC supply voltage (PFC). To this end, a nonlinear state-feedback control is developed, based on the average nonlinear model of the whole controlled system. This control strategy involves backstepping approach, Lyapunov stability and other tools from theory of linear systems. The proposed state-feedback control strategy is tested by numerical simulation which shows that the developed controller reaches its objectives</span>


1995 ◽  
Vol 19 (4) ◽  
pp. 495-507 ◽  
Author(s):  
E. Esmailzadeh ◽  
H.D. Taghirad

An analytical investigation of a half-car model with passenger dynamics, subjected to random road disturbance, is performed. Two different methods of defining the performance index for optimal controller design are proposed. Nondeterministic inputs are applied to simulate the road surface conditions more realistically. Results obtained illustrate that using an optimal state-feedback controller, with passenger acceleration included in the performance index, would exhibit not only an improved passenger ride comfort, but also, a better road handling and stability.


2019 ◽  
Vol 13 (11) ◽  
pp. 1938-1948 ◽  
Author(s):  
Ahmed G. Abo‐Khalil ◽  
Ali Alghamdi ◽  
I. Tlili ◽  
Ali M. Eltamaly

Author(s):  
Ji Huang ◽  
Yang Shi

Semi-Markov jump linear systems (S-MJLSs) are more general than Markov jump linear systems in modeling practical systems. This paper investigates the H∞ control problem for a class of semi-Markov jump linear systems with time-varying delays. The sojourn-time partition technique is firstly proposed for the delayed stochastic switching system. A sufficient condition for designing the state feedback controller is then established. Moreover, the sufficient condition is expressed as a set of linear matrix inequalities which can be readily solved. A numerical example illustrates the effectiveness of the proposed controller design technique.


1998 ◽  
Vol 120 (2) ◽  
pp. 289-292 ◽  
Author(s):  
Zidong Wang

This paper focuses on the controller design for uncertain linear continuous-time systems with H∞ norm and circular pole constraints and addresses the following multiobjective simultaneous realization problem: designing a state feedback controller such that the closed-loop system, for all admissible parameter uncertainties, simultaneously satisfies the prespecified H∞ norm constraint on the transfer function from disturbance input to output and the prespecified circular pole constraint on the closed-loop matrix. An effective, algebraic, modified Riccati equation approach is developed to solve this problem. The existence conditions, as well as the analytical expression of desired controllers, are derived. A numerical example is provided to show the directness and effectiveness of the present approach.


Sign in / Sign up

Export Citation Format

Share Document