SINGULAR PERTURBATIONS OF zn WITH MULTIPLE POLES

2008 ◽  
Vol 18 (04) ◽  
pp. 1085-1100 ◽  
Author(s):  
SEBASTIAN M. MAROTTA

We study the dynamics of the family of complex maps given by fλ(z) = zn + λ/((z - a)da(z - b)db) where n ≥ 2 is an integer and λ is an arbitrarily small complex parameter. We focus on the topological characteristics of the Julia set and the Fatou set of fλ(z). We prove that despite the large amount of possibilities there are only four different cases that correspond to different positions and orders of the poles a and b.

2008 ◽  
Vol 18 (08) ◽  
pp. 2309-2318 ◽  
Author(s):  
PAUL BLANCHARD ◽  
ROBERT L. DEVANEY ◽  
ANTONIO GARIJO ◽  
ELIZABETH D. RUSSELL

We study the family of complex maps given by Fλ(z) = zn + λ/zn + c where n ≥ 3 is an integer, λ is an arbitrarily small complex parameter, and c is chosen to be the center of a hyperbolic component of the corresponding Multibrot set. We focus on the structure of the Julia set for a map of this form generalizing a result of McMullen. We prove that it consists of a countable collection of Cantor sets of closed curves and an uncountable number of point components.


2016 ◽  
Vol 37 (6) ◽  
pp. 1997-2016 ◽  
Author(s):  
YINGQING XIAO ◽  
FEI YANG

In this paper, we study the dynamics of the family of rational maps with two parameters $$\begin{eqnarray}f_{a,b}(z)=z^{n}+\frac{a^{2}}{z^{n}-b}+\frac{a^{2}}{b},\end{eqnarray}$$ where $n\geq 2$ and $a,b\in \mathbb{C}^{\ast }$. We give a characterization of the topological properties of the Julia set and the Fatou set of $f_{a,b}$ according to the dynamical behavior of the orbits of the free critical points.


2002 ◽  
Vol 12 (12) ◽  
pp. 2869-2883 ◽  
Author(s):  
PATRICIA DOMÍNGUEZ ◽  
GUILLERMO SIENRA

This paper studies the dynamics of the family λ sin z for some values of λ. First we give a description of the Fatou set for values of λ inside the unit disc. Then for values of λ on the unit circle of parabolic type (λ = exp (i2πθ), θ = p/q, (p, q) = 1), we prove that if q is even, there is one q-cycle of Fatou components, if q is odd, there are two q cycles of Fatou components. Moreover the Fatou components of such cycles are bounded. For λ as above there exists a component Dq tangent to the unit disc at λ of a hyperbolic component. There are examples for λ such that the Julia set is the whole complex plane. Finally, we discuss the connectedness locus and the existence of buried components for the Julia set.


2002 ◽  
Vol 132 (3) ◽  
pp. 531-544 ◽  
Author(s):  
ZHENG JIAN-HUA

We investigate uniform perfectness of the Julia set of a transcendental meromorphic function with finitely many poles and prove that the Julia set of such a meromorphic function is not uniformly perfect if it has only bounded components. The Julia set of an entire function is uniformly perfect if and only if the Julia set including infinity is connected and every component of the Fatou set is simply connected. Furthermore if an entire function has a finite deficient value in the sense of Nevanlinna, then it has no multiply connected stable domains. Finally, we give some examples of meromorphic functions with uniformly perfect Julia sets.


1995 ◽  
Vol 05 (03) ◽  
pp. 673-699 ◽  
Author(s):  
NÚRIA FAGELLA

The complexification of the standard family of circle maps Fαβ(θ)=θ+α+β+β sin(θ) mod (2π) is given by Fαβ(ω)=ωeiαe(β/2)(ω−1/ω) and its lift fαβ(z)=z+a+β sin(z). We investigate the three-dimensional parameter space for Fαβ that results from considering a complex and β real. In particular, we study the two-dimensional cross-sections β=constant as β tends to zero. As the functions tend to the rigid rotation Fα,0, their dynamics tend to the dynamics of the family Gλ(z)=λzez where λ=e−iα. This new family exhibits behavior typical of the exponential family together with characteristic features of quadratic polynomials. For example, we show that the λ-plane contains infinitely many curves for which the Julia set of the corresponding maps is the whole plane. We also prove the existence of infinitely many sets of λ values homeomorphic to the Mandelbrot set.


2011 ◽  
Vol 21 (11) ◽  
pp. 3323-3339
Author(s):  
RIKA HAGIHARA ◽  
JANE HAWKINS

We study a family of rational maps of the Riemann sphere with the property that each map has two fixed points with multiplier -1; moreover, each map has no period 2 orbits. The family we analyze is Ra(z) = (z3 - z)/(-z2 + az + 1), where a varies over all nonzero complex numbers. We discuss many dynamical properties of Ra including bifurcations of critical orbit behavior as a varies, connectivity of the Julia set J(Ra), and we give estimates on the Hausdorff dimension of J(Ra).


2014 ◽  
Vol 35 (7) ◽  
pp. 2171-2197 ◽  
Author(s):  
LUNA LOMONACO

In this paper we introduce the notion of parabolic-like mapping. Such an object is similar to a polynomial-like mapping, but it has a parabolic external class, i.e. an external map with a parabolic fixed point. We define the notion of parabolic-like mapping and we study the dynamical properties of parabolic-like mappings. We prove a straightening theorem for parabolic-like mappings which states that any parabolic-like mapping of degree two is hybrid conjugate to a member of the family $$\begin{eqnarray}\mathit{Per}_{1}(1)=\left\{[P_{A}]\,\bigg|\,P_{A}(z)=z+\frac{1}{z}+A,~A\in \mathbb{C}\right\}\!,\end{eqnarray}$$ a unique such member if the filled Julia set is connected.


2009 ◽  
Vol 29 (3) ◽  
pp. 875-883 ◽  
Author(s):  
CLINTON P. CURRY ◽  
JOHN C. MAYER ◽  
JONATHAN MEDDAUGH ◽  
JAMES T. ROGERS Jr

AbstractMakienko’s conjecture, a proposed addition to Sullivan’s dictionary, can be stated as follows: the Julia set of a rational function R:ℂ∞→ℂ∞ has buried points if and only if no component of the Fatou set is completely invariant under the second iterate of R. We prove Makienko’s conjecture for rational functions with Julia sets that are decomposable continua. This is a very broad collection of Julia sets; it is not known if there exists a rational function whose Julia set is an indecomposable continuum.


1984 ◽  
Vol 4 (1) ◽  
pp. 35-52 ◽  
Author(s):  
Robert L. Devaney ◽  
Michal Krych

AbstractWe describe the dynamical behaviour of the entire transcendental function exp(z). We use symbolic dynamics to describe the complicated orbit structure of this map whose Julia Set is the entire complex plane. Bifurcations occurring in the family c exp(z) are discussed in the final section.


Sign in / Sign up

Export Citation Format

Share Document