EXPONENTIAL p-STABILITY OF STOCHASTIC REACTION–DIFFUSION CELLULAR NEURAL NETWORKS WITH MULTIPLE DELAYS

2009 ◽  
Vol 19 (10) ◽  
pp. 3373-3386 ◽  
Author(s):  
RANCHAO WU

In the current paper, a class of stochastic cellular neural networks with reaction–diffusion effects, both discrete and distributed time delays, is studied. Several sufficient conditions guaranteeing the almost sure and pth moment exponential stability of its equilibrium solution are respectively obtained through analytic methods such as employing Lyapunov functional, applying Itô's formula, inequality techniques, embedding in Banach space, Matrix analysis and semimartingale convergence theorem. The yielded conclusions, which are independent of diffusion terms and delays, assume much less restrictions on activation functions and interconnection weights, and can be applied within a broader range of neural networks. Moreover, through the obtained results, it could be noted that noise will affect the exponential stability of the system. For illustration, two examples are given to show the feasibility of results.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guowei Yang ◽  
Yonggui Kao ◽  
Changhong Wang

This paper considers dynamical behaviors of a class of fuzzy impulsive reaction-diffusion delayed cellular neural networks (FIRDDCNNs) with time-varying periodic self-inhibitions, interconnection weights, and inputs. By using delay differential inequality,M-matrix theory, and analytic methods, some new sufficient conditions ensuring global exponential stability of the periodic FIRDDCNN model with Neumann boundary conditions are established, and the exponential convergence rate index is estimated. The differentiability of the time-varying delays is not needed. An example is presented to demonstrate the efficiency and effectiveness of the obtained results.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Chuangxia Huang ◽  
Xinsong Yang ◽  
Yigang He ◽  
Lehua Huang

Stability of reaction-diffusion recurrent neural networks (RNNs) with continuously distributed delays and stochastic influence are considered. Some new sufficient conditions to guarantee the almost sure exponential stability and mean square exponential stability of an equilibrium solution are obtained, respectively. Lyapunov's functional method, M-matrix properties, some inequality technique, and nonnegative semimartingale convergence theorem are used in our approach. The obtained conclusions improve some published results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaoai Li

By using the concept of differential equations with piecewise constant argument of generalized type, a model of stochastic cellular neural networks with piecewise constant argument is developed. Sufficient conditions are obtained for the existence and uniqueness of the equilibrium point for the addressed neural networks.pth moment exponential stability is investigated by means of Lyapunov functional, stochastic analysis, and inequality technique. The results in this paper improve and generalize some of the previous ones. An example with numerical simulations is given to illustrate our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xianghong Lai ◽  
Tianxiang Yao

This work is devoted to the stability study of impulsive cellular neural networks with time-varying delays and reaction-diffusion terms. By means of new Poincaré integral inequality and Gronwall-Bellman-type impulsive integral inequality, we summarize some novel and concise sufficient conditions ensuring the global exponential stability of equilibrium point. The provided stability criteria are applicable to Dirichlet boundary condition and show that not only the reaction-diffusion coefficients but also the regional features including the boundary and dimension of spatial variable can influence the stability. Two examples are finally illustrated to demonstrate the effectiveness of our obtained results.


2007 ◽  
Vol 17 (09) ◽  
pp. 3219-3227 ◽  
Author(s):  
LI WAN ◽  
QINGHUA ZHOU ◽  
JIANHUA SUN

Stochastic effects on the stability property of reaction–diffusion generalized Cohen–Grossberg neural networks (GDCGNNs) with time-varying delay are considered. By skillfully constructing suitable Lyapunov functionals and employing the method of variational parameters, inequality technique and stochastic analysis, the delay independent and easily verifiable sufficient conditions to guarantee the mean-value exponential stability of an equilibrium solution associated with temporally uniform external inputs to the networks are obtained. One example is given to illustrate the theoretical results.


2009 ◽  
Vol 2009 ◽  
pp. 1-18 ◽  
Author(s):  
Chuangxia Huang ◽  
Xinsong Yang ◽  
Yigang He

This paper is concerned withpth moment exponential stability of stochastic reaction-diffusion Cohen-Grossberg neural networks with time-varying delays. With the help of Lyapunov method, stochastic analysis, and inequality techniques, a set of new suffcient conditions onpth moment exponential stability for the considered system is presented. The proposed results generalized and improved some earlier publications.


Author(s):  
Qianhong Zhang ◽  
Lihui Yang ◽  
Daixi Liao

Existence and exponential stability of a periodic solution for fuzzy cellular neural networks with time-varying delays Fuzzy cellular neural networks with time-varying delays are considered. Some sufficient conditions for the existence and exponential stability of periodic solutions are obtained by using the continuation theorem based on the coincidence degree and the differential inequality technique. The sufficient conditions are easy to use in pattern recognition and automatic control. Finally, an example is given to show the feasibility and effectiveness of our methods.


2010 ◽  
Vol 20 (05) ◽  
pp. 1541-1549 ◽  
Author(s):  
MAN-CHUN TAN ◽  
YAN ZHANG ◽  
WEN-LI SU ◽  
YU-NONG ZHANG

Some sufficient conditions to ensure the existence, uniqueness and global exponential stability of the equilibrium point of cellular neural networks with variable delays are derived. These results extend and improve the existing ones in the literature. Two illustrative examples are given to demonstrate the effectiveness of our results.


2011 ◽  
Vol 105-107 ◽  
pp. 2315-2320
Author(s):  
Xiao Chen

In order to effectively improve the equipment maintenance material procurement management efficiency, improve economic efficiency of using the procurement funds, strengthen mathematical theory applications in the area of procurement, the neural network used in evaluation of organizational change is one of the most effective means. In this paper, a class of stochastic Cohen–Grossberg neural networks with reaction-diffusion terms, discrete time delay and distributed time delay is investigated. First, we describe the modeling, illuminate the significance of the system and introduce some preliminary definitions and lemmas which will be employed throughout the paper. Then, by using the Lyapunov functional method, M-matrix properties, nonnegative semimartingale convergence theorem and some inequality technique, sufficient conditions are obtained to guarantee the exponential stability of the system.


2009 ◽  
Vol 19 (10) ◽  
pp. 3387-3395 ◽  
Author(s):  
LIPING CHEN ◽  
RANCHAO WU

The exponential stability of a class of stochastic fuzzy cellular neural networks with distributed delays is investigated in this paper. By using analytic methods such as Lyapunov functional, Itô's formula, inequality techniques and non-negative semimartingale convergence theorem, the sufficient conditions guaranteeing the almost sure and mean square exponential stability of its equilibrium solution are respectively obtained. For illustration, an example is given to show the feasibility of results.


Sign in / Sign up

Export Citation Format

Share Document