Gallery of Chaotic Attractors Generated by Fractal Network

2015 ◽  
Vol 25 (01) ◽  
pp. 1530002 ◽  
Author(s):  
Kais Bouallegue

During the last decade, fractal processes and chaotic systems were widely studied in many areas of research. Chaotic systems are highly dependent on initial conditions. Small changes in initial conditions can generate widely diverging or converging outcomes for both bifurcation or attraction in chaotic systems. In this work, we present a new method on how to generate a new family of chaotic attractors by combining these with a network of fractal processes. The proposed approach in this article is based upon the construction of a new system of fractal processes.

2012 ◽  
Vol 22 (05) ◽  
pp. 1250116 ◽  
Author(s):  
XIONG WANG ◽  
JUAN CHEN ◽  
JUN-AN LU ◽  
GUANRONG CHEN

This paper reports the finding of a simple one-parameter family of three-dimensional quadratic autonomous chaotic systems. By tuning the only parameter, this system can continuously generate a variety of cascading Lorenz-like attractors, which appears to be richer than the unified chaotic system that contains the Lorenz and the Chen systems as its two extremes. Although this new family of chaotic systems has very rich and complex dynamics, it has a very simple algebraic structure with only two quadratic terms (same as the Lorenz and the Chen systems) and all nonzero coefficients in the linear part being -1 except one -0.1 (thus, simpler than the Lorenz and Chen systems). Surprisingly, although this new system belongs to the Lorenz-type of systems in the classification of the generalized Lorenz canonical form, it can generate not only Lorenz-like attractors but also Chen-like attractors. This suggests that there may exist some other unknown yet more essential algebraic characteristics for describing general three-dimensional quadratic autonomous chaotic systems.


2018 ◽  
Vol 28 (13) ◽  
pp. 1830044 ◽  
Author(s):  
Shijian Cang ◽  
Yue Li ◽  
Zenghui Wang

In the literature, there are few conservative chaotic systems which are not obviously conservative according to their equations. This paper reports a 3D time-reversible symmetric chaotic system without equilibrium. The matrix form of the new system shows that there exists a Hamiltonian, which can exhibit interesting spatial structures (isosurfaces) controlled by different initial conditions. Numerical results shows that different initial conditions lead to different dynamical behaviors, such as quasi-periodic motion and conservative chaos. Moreover, the chaotic trajectories, visually, entwine around a isosurface and form a complicated topological structure like a single crystal lattice.


2020 ◽  
Vol 30 (11) ◽  
pp. 2050220
Author(s):  
Xuenan Peng ◽  
Yicheng Zeng

For further increasing the complexity of chaotic attractors, a new method for generating Mirror Symmetry Composite Multiscroll Chaotic Attractors (MSCMCA) is proposed. We take the Lorenz system as an example to explain the mechanism of the method. Firstly, by varying the signs and magnitudes of the nonlinear terms, the Lorenz system generates symmetrical attractors and different-magnitude attractors, respectively. Secondly, a modified Lorenz system is constructed by imposing several unified multilevel-logic pulse signals to the Lorenz system. The new system generates a novel chaotic attractor consisting of two pairs of different-magnitude symmetrical attractors. By adjusting the parameters of the pulse signals, the modified Lorenz system can also be controlled to generate novel grid multiscroll chaotic attractors, namely MSCMCA. Several dynamical behaviors of the new system are shown by equilibria analysis and Lyapunov exponent spectrum. Moreover, the method can be applied to other chaotic systems. Finally, a circuit of the modified Lorenz system is designed by Multisim software, and the simulation result proves the effectiveness of the method.


Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 556 ◽  
Author(s):  
Shaobo He ◽  
Chunbiao Li ◽  
Kehui Sun ◽  
Sajad Jafari

Designing a chaotic system with infinitely many attractors is a hot topic. In this paper, multiscale multivariate permutation entropy (MMPE) and multiscale multivariate Lempel–Ziv complexity (MMLZC) are employed to analyze the complexity of those self-reproducing chaotic systems with one-directional and two-directional infinitely many chaotic attractors. The analysis results show that complexity of this class of chaotic systems is determined by the initial conditions. Meanwhile, the values of MMPE are independent of the scale factor, which is different from the algorithm of MMLZC. The analysis proposed here is helpful as a reference for the application of the self-reproducing systems.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Lilian Huang ◽  
Wenju Yao ◽  
Jianhong Xiang ◽  
Zefeng Zhang

In this paper, a new 4D memristor-based chaotic system is constructed by using a smooth flux-controlled memristor to replace a resistor in the realization circuit of a 3D chaotic system. Compared with general chaotic systems, the chaotic system can generate coexisting infinitely many attractors. The proposed chaotic system not only possesses heterogeneous multistability but also possesses homogenous multistability. When the parameters of system are fixed, the chaotic system only generates two kinds of chaotic attractors with different positions in a very large range of initial values. Different from other chaotic systems with continuous bifurcation diagrams, this system has discrete bifurcation diagrams when the initial values change. In addition, this paper reveals the relationship between the symmetry of coexisting attractors and the symmetry of initial values in the system. The dynamic behaviors of the new system are analyzed by equilibrium point and stability, bifurcation diagrams, Lyapunov exponents, and phase orbit diagrams. Finally, the chaotic attractors are captured through circuit simulation, which verifies numerical simulation.


Chaotic systems behavior attracts many researchers in the field of image encryption. The major advantage of using chaos as the basis for developing a crypto-system is due to its sensitivity to initial conditions and parameter tunning as well as the random-like behavior which resembles the main ingredients of a good cipher namely the confusion and diffusion properties. In this article, we present a new scheme based on the synchronization of dual chaotic systems namely Lorenz and Chen chaotic systems and prove that those chaotic maps can be completely synchronized with other under suitable conditions and specific parameters that make a new addition to the chaotic based encryption systems. This addition provides a master-slave configuration that is utilized to construct the proposed dual synchronized chaos-based cipher scheme. The common security analyses are performed to validate the effectiveness of the proposed scheme. Based on all experiments and analyses, we can conclude that this scheme is secure, efficient, robust, reliable, and can be directly applied successfully for many practical security applications in insecure network channels such as the Internet


2009 ◽  
Vol 19 (06) ◽  
pp. 1931-1949 ◽  
Author(s):  
QIGUI YANG ◽  
KANGMING ZHANG ◽  
GUANRONG CHEN

In this paper, a modified generalized Lorenz-type system is introduced, which is state-equivalent to a simple and special form, and is parameterized by two parameters useful for chaos turning and system classification. More importantly, based on the parameterized form, two classes of new chaotic attractors are found for the first time in the literature, which are similar but nonequivalent in topological structure. To further understand the complex dynamics of the new system, some basic properties such as Lyapunov exponents, Hopf bifurcations and compound structure of the attractors are analyzed and demonstrated with careful numerical simulations.


2021 ◽  
Author(s):  
Ali Durdu ◽  
Yılmaz Uyaroğlu

Abstract Many studies have been introduced in the literature showing that two identical chaotic systems can be synchronized with different initial conditions. Secure data communication applications have also been made using synchronization methods. In the study, synchronization times of two popular synchronization methods are compared, which is an important issue for communication. Among the synchronization methods, active control, integer, and fractional-order Pecaro Carroll (P-C) method was used to synchronize the Burke-Shaw chaotic attractor. The experimental results showed that the P-C method with optimum fractional-order is synchronized in 2.35 times shorter time than the active control method. This shows that the P-C method using fractional-order creates less delay in synchronization and is more convenient to use in secure communication applications.


2021 ◽  
Author(s):  
Süleyman UZUN ◽  
Sezgin KAÇAR ◽  
Burak ARICIOĞLU

Abstract In this study, for the first time in the literature, identification of different chaotic systems by classifying graphic images of their time series with deep learning methods is aimed. For this purpose, a data set is generated that consists of the graphic images of time series of the most known three chaotic systems: Lorenz, Chen, and Rossler systems. The time series are obtained for different parameter values, initial conditions, step size and time lengths. After generating the data set, a high-accuracy classification is performed by using transfer learning method. In the study, the most accepted deep learning models of the transfer learning methods are employed. These models are SqueezeNet, VGG-19, AlexNet, ResNet50, ResNet101, DenseNet201, ShuffleNet and GoogLeNet. As a result of the study, classification accuracy is found between 96% and 97% depending on the problem. Thus, this study makes association of real time random signals with a mathematical system possible.


2018 ◽  
Vol 28 (13) ◽  
pp. 1850167 ◽  
Author(s):  
Sen Zhang ◽  
Yicheng Zeng ◽  
Zhijun Li ◽  
Chengyi Zhou

Recently, the notion of hidden extreme multistability and hidden attractors is very attractive in chaos theory and nonlinear dynamics. In this paper, by utilizing a simple state feedback control technique, a novel 4D fractional-order hyperchaotic system is introduced. Of particular interest is that this new system has no equilibrium, which indicates that its attractors are all hidden and thus Shil’nikov method cannot be applied to prove the existence of chaos for lacking hetero-clinic or homo-clinic orbits. Compared with other fractional-order chaotic or hyperchaotic systems, this new system possesses three unique and remarkable features: (i) The amazing and interesting phenomenon of the coexistence of infinitely many hidden attractors with respect to same system parameters and different initial conditions is observed, meaning that hidden extreme multistability arises. (ii) By varying the initial conditions and selecting appropriate system parameters, the striking phenomenon of antimonotonicity is first discovered, especially in such a fractional-order hyperchaotic system without equilibrium. (iii) An attractive special feature of the convenience of offset boosting control of the system is also revealed. The complex and rich hidden dynamic behaviors of this system are investigated by using conventional nonlinear analysis tools, including equilibrium stability, phase portraits, bifurcation diagram, Lyapunov exponents, spectral entropy complexity, and so on. Furthermore, a hardware electronic circuit is designed and implemented. The hardware experimental results and the numerical simulations of the same system on the Matlab platform are well consistent with each other, which demonstrates the feasibility of this new fractional-order hyperchaotic system.


Sign in / Sign up

Export Citation Format

Share Document