scholarly journals Numerical treatment of singularly perturbed delay reaction-diffusion equations

2020 ◽  
Vol 12 (1) ◽  
pp. 15-24
Author(s):  
Gashu Gadisa Kiltu ◽  
Gemechis File Duressa ◽  
Tesfaye Aga Bullo

This paper presents a uniform convergent numerical method for solving singularly perturbed delay reaction-diffusion equations. The stability and convergence analysis are investigated. Numerical results are tabulated and the effect of the layer on the solution is examined. In a nutshell, the present method improves the findings of some existing numerical methods reported in the literature. Keywords: Singularly perturbed, Time delay, Reaction-diffusion equation, Layer

2020 ◽  
Vol 21 (1) ◽  
pp. 119-133
Author(s):  
Li Chen ◽  
Laurent Desvillettes ◽  
Evangelos Latos

Abstract In this paper, global-in-time existence and blow-up results are shown for a reaction-diffusion equation appearing in the theory of aggregation phenomena (including chemotaxis). Properties of the corresponding steady-state problem are also presented. Moreover, the stability around constant equilibria and the non-existence of nonconstant solutions are studied in certain cases.


2016 ◽  
Vol 26 (08) ◽  
pp. 1650135 ◽  
Author(s):  
C. A. Cardoso ◽  
J. A. Langa ◽  
R. Obaya

In this paper, we describe in detail the global and cocycle attractors related to nonautonomous scalar differential equations with diffusion. In particular, we investigate reaction–diffusion equations with almost-periodic coefficients. The associated semiflows are strongly monotone which allow us to give a full characterization of the cocycle attractor. We prove that, when the upper Lyapunov exponent associated to the linear part of the equations is positive, the flow is persistent in the positive cone, and we study the stability and the set of continuity points of the section of each minimal set in the global attractor for the skew product semiflow. We illustrate our result with some nontrivial examples showing the richness of the dynamics on this attractor, which in some situations shows internal chaotic dynamics in the Li–Yorke sense. We also include the sublinear and concave cases in order to go further in the characterization of the attractors, including, for instance, a nonautonomous version of the Chafee–Infante equation. In this last case we can show exponentially forward attraction to the cocycle (pullback) attractors in the positive cone of solutions.


Author(s):  
Maitere Aguerrea ◽  
Sergei Trofimchuk ◽  
Gabriel Valenzuela

We consider positive travelling fronts, u ( t ,  x )= ϕ ( ν . x + ct ), ϕ (−∞)=0, ϕ (∞)= κ , of the equation u t ( t ,  x )=Δ u ( t ,  x )− u ( t ,  x )+ g ( u ( t − h ,  x )), x ∈ m . This equation is assumed to have exactly two non-negative equilibria: u 1 ≡0 and u 2 ≡ κ >0, but the birth function g ∈ C 2 ( ,  ) may be non-monotone on [0, κ ]. We are therefore interested in the so-called monostable case of the time-delayed reaction–diffusion equation. Our main result shows that for every fixed and sufficiently large velocity c , the positive travelling front ϕ ( ν . x + ct ) is unique (modulo translations). Note that ϕ may be non-monotone. To prove uniqueness, we introduce a small parameter ϵ =1/ c and realize a Lyapunov–Schmidt reduction in a scale of Banach spaces.


Sign in / Sign up

Export Citation Format

Share Document