Dynamical Analysis on a Finance System with Nonconstant Elasticity of Demand

2020 ◽  
Vol 30 (10) ◽  
pp. 2050148
Author(s):  
Ting Yang

This paper investigates a finance system with nonconstant elasticity of demand. First, under some conditions, the system has invariant algebraic surfaces and the analytic expressions of the surfaces are given. Furthermore, when the two surfaces coincide and become one surface, the dynamics on the surface are analyzed and a globally stable equilibrium is found. Second, by using the normal form theory, the Hopf bifurcation is studied and the approximate expression and stability of the bifurcating periodic orbit are obtained. Third, the chaotic behaviors are investigated and the route to chaos is period-doubling bifurcations. Moreover, it is found that the system has coexisting attractors, including periodic attractor and periodic attractor, chaotic attractor and chaotic attractor. With the change of parameter, the two chaotic attractors coincide and then a symmetrical chaotic attractor arises.

2016 ◽  
Vol 26 (1) ◽  
pp. 95-115 ◽  
Author(s):  
Ourania I. Tacha ◽  
Christos K. Volos ◽  
Ioannis N. Stouboulos ◽  
Ioannis M. Kyprianidis

In this paper a novel 3-D nonlinear finance chaotic system consisting of two nonlinearities with negative saving term, which is called ‘dissaving’ is presented. The dynamical analysis of the proposed system confirms its complex dynamic behavior, which is studied by using wellknown simulation tools of nonlinear theory, such as the bifurcation diagram, Lyapunov exponents and phase portraits. Also, some interesting phenomena related with nonlinear theory are observed, such as route to chaos through a period doubling sequence and crisis phenomena. In addition, an interesting scheme of adaptive control of finance system’s behavior is presented. Furthermore, the novel nonlinear finance system is emulated by an electronic circuit and its dynamical behavior is studied by using the electronic simulation package Cadence OrCAD in order to confirm the feasibility of the theoretical model.


2019 ◽  
Vol 33 (21) ◽  
pp. 1950240 ◽  
Author(s):  
Jian-Jun He ◽  
Bang-Cheng Lai

The purpose of this work is to introduce a novel 4D chaotic system and investigate its multistability. The novel system has an unstable origin and two stable symmetrical hyperbolic equilibria. When the parameter increases across a critical value, the equilibria lose their stability and double Hopf bifurcations occur with the appearance of limit cycles. A pair of point, periodic, chaotic attractors are observed in the system from different initial values for given parameters. The chaos of the system is yielded via period-doubling bifurcation. A double-scroll chaotic attractor is numerically observed as well. By using the electronic circuit, the chaotic attractor of the system is realized. The control problem of the system is reported. An effective controller is designed to stabilize the system.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zizhen Zhang ◽  
Ruibin Wei ◽  
Wanjun Xia

AbstractIn this paper, we are concerned with a delayed smoking model in which the population is divided into five classes. Sufficient conditions guaranteeing the local stability and existence of Hopf bifurcation for the model are established by taking the time delay as a bifurcation parameter and employing the Routh–Hurwitz criteria. Furthermore, direction and stability of the Hopf bifurcation are investigated by applying the center manifold theorem and normal form theory. Finally, computer simulations are implemented to support the analytic results and to analyze the effects of some parameters on the dynamical behavior of the model.


2014 ◽  
Vol 266 ◽  
pp. 80-82 ◽  
Author(s):  
Antonio Algaba ◽  
Fernando Fernández-Sánchez ◽  
Manuel Merino ◽  
Alejandro J. Rodríguez-Luis

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

This paper is devoted to the study of an SIRS computer virus propagation model with two delays and multistate antivirus measures. We demonstrate that the system loses its stability and a Hopf bifurcation occurs when the delay passes through the corresponding critical value by choosing the possible combination of the two delays as the bifurcation parameter. Moreover, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by means of the center manifold theorem and the normal form theory. Finally, some numerical simulations are performed to illustrate the obtained results.


2018 ◽  
Vol 5 (1) ◽  
pp. 138-151 ◽  
Author(s):  
Jai Prakash Tripathi ◽  
Swati Tyagi ◽  
Syed Abbas

AbstractIn this paper, we study a predator-prey model with prey refuge and delay. We investigate the combined role of prey refuge and delay on the dynamical behaviour of the delayed system by incorporating discrete type gestation delay of predator. It is found that Hopf bifurcation occurs when the delay parameter τ crosses some critical value. In particular, it is shown that the conditions obtained for the Hopf bifurcation behaviour are sufficient but not necessary and the prey reserve is unable to stabilize the unstable interior equilibrium due to Hopf bifurcation. In particular, the direction and stability of bifurcating periodic solutions are determined by applying normal form theory and center manifold theorem for functional differential equations. Mathematically, we analyze the effect of increase or decrease of prey reserve on the equilibrium states of prey and predator species. At the end, we perform some numerical simulations to substantiate our analytical findings.


2015 ◽  
Vol 25 (09) ◽  
pp. 1550122 ◽  
Author(s):  
Jaume Llibre ◽  
Ana Rodrigues

A one-parameter family of differential systems that bridges the gap between the Lorenz and the Chen systems was proposed by Lu, Chen, Cheng and Celikovsy. The goal of this paper is to analyze what we can say using analytic tools about the dynamics of this one-parameter family of differential systems. We shall describe its global dynamics at infinity, and for two special values of the parameter a we can also describe the global dynamics in the whole ℝ3using the invariant algebraic surfaces of the family. Additionally we characterize the Hopf bifurcations of this family.


Sign in / Sign up

Export Citation Format

Share Document