Parametric Frequency Analysis of Mathieu–Duffing Equation

2021 ◽  
Vol 31 (12) ◽  
pp. 2150181
Author(s):  
Mohsen Azimi

The classic linear Mathieu equation is one of the archetypical differential equations which has been studied frequently by employing different analytical and numerical methods. The Mathieu equation with cubic nonlinear term, also known as Mathieu–Duffing equation, is one of the many extensions of the classic Mathieu equation. Nonlinear characteristics of such equation have been investigated in many papers. Specifically, the method of multiple scale has been used to demonstrate the pitchfork bifurcation associated with stability change around the first unstable tongue and Lie transform has been used to demonstrate the subharmonic bifurcation for relatively small values of the undamped natural frequency. In these works, the resulting bifurcation diagram is represented in the parameter space of the undamped natural frequency where a constant value is allocated to the parametric frequency. Alternatively, this paper demonstrates how the Poincaré–Lindstedt method can be used to formulate pitchfork bifurcation around the first unstable tongue. Further, it is shown how higher order terms can be included in the perturbation analysis to formulate pitchfork bifurcation around the second tongue, and also subharmonic bifurcations for relatively high values of parametric frequency. This approach enables us to demonstrate the resulting global bifurcation diagram in the parameter space of parametric frequency, which is beneficial in the bifurcation analysis of systems with constant undamped natural frequency, when the frequency of the parametric force can vary. Finally, the analytical approximations are verified by employing the numerical integration along with Poincaré map and phase portraits.

2007 ◽  
Vol 17 (09) ◽  
pp. 3071-3083 ◽  
Author(s):  
J. M. GONZÀLEZ-MIRANDA

The results of a study of the bifurcation diagram of the Hindmarsh–Rose neuron model in a two-dimensional parameter space are reported. This diagram shows the existence and extent of complex bifurcation structures that might be useful to understand the mechanisms used by the neurons to encode information and give rapid responses to stimulus. Moreover, the information contained in this phase diagram provides a background to develop our understanding of the dynamics of interacting neurons.


2021 ◽  
Vol 31 (08) ◽  
pp. 2130023
Author(s):  
Zhijun Li ◽  
Siyuan Fang ◽  
Minglin Ma ◽  
Mengjiao Wang

Bursting oscillations are ubiquitous in multi-time scale systems and have attracted widespread attention in recent years. However, research on experimental demonstration of the bursting oscillations induced by delayed bifurcation is very rarely reported. In this paper, a parametrically driven Rucklidge system is introduced and a distinct delayed behavior is observed when the time-varying parameter passes through the pitchfork bifurcation point. Different bursting patterns induced by such a delayed behavior are numerically investigated under different excitation amplitudes based on the fast–slow analysis method. Furthermore, in order to reproduce the bursting electronic signals and explore the underlying formation mechanisms experimentally, a real physical circuit of the parametrically driven Rucklidge system is developed by using off-the-shelf electronic devices. The real-time measurement results such as time series, phase portraits and transformed phase portraits are in good qualitative agreement with those obtained from the numerical computations. The experimental evidence to verify bursting oscillations induced by delayed pitchfork bifurcation is thus provided in this study.


2019 ◽  
Vol 49 (9) ◽  
pp. 1201
Author(s):  
Llibre Jaume ◽  
Li Shimin

2015 ◽  
Vol 25 (11) ◽  
pp. 1550150 ◽  
Author(s):  
Oxana Cerba Diaconescu ◽  
Dana Schlomiuk ◽  
Nicolae Vulpe

In this article, we consider the class [Formula: see text] of all real quadratic differential systems [Formula: see text], [Formula: see text] with gcd (p, q) = 1, having invariant lines of total multiplicity four and two complex and one real infinite singularities. We first construct compactified canonical forms for the class [Formula: see text] so as to include limit points in the 12-dimensional parameter space of this class. We next construct the bifurcation diagrams for these compactified canonical forms. These diagrams contain many repetitions of phase portraits and we show that these are due to many symmetries under the group action. To retain the essence of the dynamics we finally construct the quotient spaces under the action of the group G = Aff(2, ℝ) × ℝ* of affine transformations and time homotheties and we place the phase portraits in these quotient spaces. The final diagrams retain only the necessary information to capture the dynamics under the motion in the parameter space as well as under this group action. We also present here necessary and sufficient conditions for an affine line to be invariant of multiplicity k for a quadratic system.


In this series of papers we re-examine, using recently developed techniques, some chemical kinetic models that have appeared in the literature with a view to obtaining a complete description of all the qualitatively distinct behaviour that the system can exhibit. Each of the schemes is describable by two coupled ordinary differential equations and contain at most three independent parameters. We find that even with these relatively simple chemical schemes there are regions of parameter space in which the systems display behaviour not previously found. Quite often these regions are small and it seems unlikely that they would be found via classical methods. In part I of the series we consider one of the thermally coupled kinetic oscillator models studied by Sal’nikov. He showed that there is a region in parameter space in which the system would be in a state of undamped oscillations because the relevant phase portrait consists of an unstable steady state surrounded by a stable limit cycle. Our analysis has revealed two further regions in which the phase portraits contain, respectively, two limit cycles of opposite stability enclosing a stable steady state and three limit cycles of alternating stability surrounding an unstable steady state. This latter region is extremely small, so much so that it could be reasonably neglected in any predictions made from the model.


Author(s):  
Jack K. Hale ◽  
Hildebrando M. Rodrigues

SynopsisIn a previous paper, the authors gave a complete description of the number of even harmonic solutions of Duffing's equation without damping for the parameters varying in a full neighbourhood of the origin in the parameter space. In this paper, the analysis is extended to the case of an independent small damping term. It is also shown that all solutions of the undamped equation are even functions of time.


2014 ◽  
Vol 24 (04) ◽  
pp. 1450044 ◽  
Author(s):  
Joan C. Artés ◽  
Alex C. Rezende ◽  
Regilene D. S. Oliveira

Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert's 16th problem [Hilbert, 1900, 1902], are still open for this family. In this paper, we study the bifurcation diagram of the family QsnSN which is the set of all quadratic systems which have at least one finite semi-elemental saddle-node and one infinite semi-elemental saddle-node formed by the collision of two infinite singular points. We study this family with respect to a specific normal form which puts the finite saddle-node at the origin and fixes its eigenvectors on the axes. Our aim is to make a global study of the family [Formula: see text] which is the closure of the set of representatives of QsnSN in the parameter space of that specific normal form. This family can be divided into three different subfamilies according to the position of the infinite saddle-node, namely: (A) with the infinite saddle-node in the horizontal axis, (B) with the infinite saddle-node in the vertical axis and (C) with the infinite saddle-node in the bisector of the first and third quadrants. These three subfamilies modulo the action of the affine group and times homotheties are four-dimensional. Here, we provide the complete study of the geometry with respect to a normal form of the first two families, (A) and (B). The bifurcation diagram for the subfamily (A) yields 38 phase portraits for systems in [Formula: see text] (29 in QsnSN(A)) out of which only three have limit cycles and 13 possess graphics. The bifurcation diagram for the subfamily (B) yields 25 phase portraits for systems in [Formula: see text] (16 in QsnSN(B)) out of which 11 possess graphics. None of the 25 portraits has limit cycles. Case (C) will yield many more phase portraits and will be written separately in a forthcoming new paper. Algebraic invariants are used to construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The bifurcation set of [Formula: see text] is the union of algebraic surfaces and one surface whose presence was detected numerically. All points in this surface correspond to connections of separatrices. The bifurcation set of [Formula: see text] is formed only by algebraic surfaces.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650198 ◽  
Author(s):  
Hebai Chen

In this paper, we investigate the global dynamics of a memristor oscillator [Formula: see text] which comes from [Corinto et al., 2011], where [Formula: see text], and [Formula: see text]. Clearly, the case [Formula: see text] is trivial. So far, all results of this oscillator were given only for the case [Formula: see text], where the set of equilibria may change among a singleton, three points and a singular continuum and at most one limit cycle can arise and no limit cycles arise from the continuum. Compared with the case [Formula: see text], this oscillator displays more complicated dynamics for the case when [Formula: see text]. More clearly, one limit cycle may arise from the continuum and at most three limit cycles appear in the case of three equilibria, where generalized pitchfork bifurcation, saddle-node bifurcation, generalized Hopf bifurcation, double limit cycle bifurcation and homoclinic bifurcation may occur. Finally all global phase portraits are given for [Formula: see text] cases on the Poincaré disc, where a generalized normal sector method is applied. Moreover, our partial analytical results are demonstrated by numerical examples.


2010 ◽  
Vol 24 (18) ◽  
pp. 1943-1950
Author(s):  
C. WANG ◽  
J. C. CAO

We have analyzed the spatio-temporal patterns of current self-oscillation under DC bias and terahertz frequency-dependent nonlinear dynamics in semiconducting single-walled zigzag carbon nanotubes (CNTs). It is found that different transport states, including periodic and chaotic, appear with the influence of an external AC signal. The global transitions between periodic and chaotic states are clearly resolved from Poincaré bifurcation diagram. When the driving frequency is fixed at inverse golden mean ratio times natural frequency, the nonlinear CNT system exhibits a more complex transition behavior than at other driving frequencies.


Sign in / Sign up

Export Citation Format

Share Document