NONLINEAR MODELING OF COMPLEX MECHANICAL SYSTEMS
This article provides an introduction to a technique for formulating nonlinear models of mechanical systems composed of interconnected and constrained rigid body systems such as those encountered in vehicle technology, biomechanics, spacecraft design and robotics. The approach is based on an algorithm developed by Kane to treat nonholonomic systems, for example systems with rolling constraints. The algorithm is interpreted geometrically in terms of tangent vectors to the instantaneous configuration manifold embedded in the space of nonconstrained motions for the system. The level and style of the presentation is intended to be understood by scientifically literate readers with minimal knowledge in mechanics beyond the introductory level. Examples also show how computer algebra can be used to reduce the effort required for treating complex systems. An annotated reference list, which includes a discussion of computer software, is also provided.