Deep Understanding of Runtime Configuration Intention

Author(s):  
Chenglong Zhou ◽  
Haoran Liu ◽  
Yuanliang Zhang ◽  
Zhipeng Xue ◽  
Qing Liao ◽  
...  

The runtime environment and workload of software are constantly changing, requiring users to make appropriate adjustments to accommodate these changes. The runtime configuration, however, as the interface for users to manipulate software behavior often requires domain-specific knowledge to understand. This usually results in users spending a considerable amount of time wading through document and user manuals trying to understand the runtime configuration. In this paper, we study the possibility of understanding the intention of runtime configuration options through their documents, even sometimes it is difficult for users to understand. Based on these studies, we classify the runtime configuration option’s intention into six categories. Accordingly, we design runtime Configuration Intention Classifier (CIC), a supervised approach based on CNN to classify the runtime configuration option’s intention according to its document. CIC integrates the features of runtime configuration names and descriptions according to different levels of granularity and predicts the intention of runtime configuration options accordingly. Extensive experiments show that our approach can achieve an accuracy of 85.6% and outperform nine comparative approaches by up to 16.6% over the dataset we customized.

Author(s):  
Susan A. Gelman

This chapter addresses what children’s concepts reveal about classic debates in developmental psychology. It is argued that throughout development, concepts are multifaceted, reflecting their varied functions. As a result, children’s concepts (a) are early emerging but undergo qualitative change, (b) obey domain-general principles yet are embedded in domain-specific knowledge structures, (c) are actively constructed but deeply informed by input, (d) are flexible but constrained, and (e) include both statistics and theory. The interplay between different levels of analysis, different sources of knowledge, and different developmental processes may itself provide an important engine for conceptual growth and change.


2014 ◽  
Vol 10 (3) ◽  
pp. 249-261 ◽  
Author(s):  
Tessa Sanderson ◽  
Jo Angouri

The active involvement of patients in decision-making and the focus on patient expertise in managing chronic illness constitutes a priority in many healthcare systems including the NHS in the UK. With easier access to health information, patients are almost expected to be (or present self) as an ‘expert patient’ (Ziebland 2004). This paper draws on the meta-analysis of interview data collected for identifying treatment outcomes important to patients with rheumatoid arthritis (RA). Taking a discourse approach to identity, the discussion focuses on the resources used in the negotiation and co-construction of expert identities, including domain-specific knowledge, access to institutional resources, and ability to self-manage. The analysis shows that expertise is both projected (institutionally sanctioned) and claimed by the patient (self-defined). We close the paper by highlighting the limitations of our pilot study and suggest avenues for further research.


1998 ◽  
Vol 10 (1) ◽  
pp. 1-34 ◽  
Author(s):  
Alfonso Caramazza ◽  
Jennifer R. Shelton

We claim that the animate and inanimate conceptual categories represent evolutionarily adapted domain-specific knowledge systems that are subserved by distinct neural mechanisms, thereby allowing for their selective impairment in conditions of brain damage. On this view, (some of) the category-specific deficits that have recently been reported in the cognitive neuropsychological literature—for example, the selective damage or sparing of knowledge about animals—are truly categorical effects. Here, we articulate and defend this thesis against the dominant, reductionist theory of category-specific deficits, which holds that the categorical nature of the deficits is the result of selective damage to noncategorically organized visual or functional semantic subsystems. On the latter view, the sensory/functional dimension provides the fundamental organizing principle of the semantic system. Since, according to the latter theory, sensory and functional properties are differentially important in determining the meaning of the members of different semantic categories, selective damage to the visual or the functional semantic subsystem will result in a category-like deficit. A review of the literature and the results of a new case of category-specific deficit will show that the domain-specific knowledge framework provides a better account of category-specific deficits than the sensory/functional dichotomy theory.


Author(s):  
Shaw C. Feng ◽  
William Z. Bernstein ◽  
Thomas Hedberg ◽  
Allison Barnard Feeney

The need for capturing knowledge in the digital form in design, process planning, production, and inspection has increasingly become an issue in manufacturing industries as the variety and complexity of product lifecycle applications increase. Both knowledge and data need to be well managed for quality assurance, lifecycle impact assessment, and design improvement. Some technical barriers exist today that inhibit industry from fully utilizing design, planning, processing, and inspection knowledge. The primary barrier is a lack of a well-accepted mechanism that enables users to integrate data and knowledge. This paper prescribes knowledge management to address a lack of mechanisms for integrating, sharing, and updating domain-specific knowledge in smart manufacturing (SM). Aspects of the knowledge constructs include conceptual design, detailed design, process planning, material property, production, and inspection. The main contribution of this paper is to provide a methodology on what knowledge manufacturing organizations access, update, and archive in the context of SM. The case study in this paper provides some example knowledge objects to enable SM.


2017 ◽  
Author(s):  
Marilena Oita ◽  
Antoine Amarilli ◽  
Pierre Senellart

Deep Web databases, whose content is presented as dynamically-generated Web pages hidden behind forms, have mostly been left unindexed by search engine crawlers. In order to automatically explore this mass of information, many current techniques assume the existence of domain knowledge, which is costly to create and maintain. In this article, we present a new perspective on form understanding and deep Web data acquisition that does not require any domain-specific knowledge. Unlike previous approaches, we do not perform the various steps in the process (e.g., form understanding, record identification, attribute labeling) independently but integrate them to achieve a more complete understanding of deep Web sources. Through information extraction techniques and using the form itself for validation, we reconcile input and output schemas in a labeled graph which is further aligned with a generic ontology. The impact of this alignment is threefold: first, the resulting semantic infrastructure associated with the form can assist Web crawlers when probing the form for content indexing; second, attributes of response pages are labeled by matching known ontology instances, and relations between attributes are uncovered; and third, we enrich the generic ontology with facts from the deep Web.


Author(s):  
M. Ben Ellefi ◽  
P. Drap ◽  
O. Papini ◽  
D. Merad ◽  
J. P. Royer ◽  
...  

<p><strong>Abstract.</strong> A key challenge in cultural heritage (CH) sites visualization is to provide models and tools that effectively integrate the content of a CH data with domain-specific knowledge so that the users can query, interpret and consume the visualized information. Moreover, it is important that the intelligent visualization systems are interoperable in the semantic web environment and thus, capable of establishing a methodology to acquire, integrate, analyze, generate and share numeric contents and associated knowledge in human and machine-readable Web. In this paper, we present a model, a methodology and a software Web-tools that support the coupling of the 2D/3D Web representation with the knowledge graph database of <i>Xlendi</i> shipwreck. The Web visualization tools and the knowledge-based techniques are married into a photogrammetry driven ontological model while at the same time, user-friendly web tools for querying and semantic consumption of the shipwreck information are introduced.</p>


Sign in / Sign up

Export Citation Format

Share Document