Analysis of Gas-Liquid Cylindrical Cyclone Separator With Inlet Modifications Using Fluid–Structure Interaction

2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Abstract The gas-liquid cylindrical cyclone (GLCC©, The University of Tulsa, 1994) is a simple, compact, and low-cost separator, which provides an economically attractive alternative to conventional gravity-based separators over a wide range of applications. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. An in-depth evaluation of specific design modifications and their effect on safety and structural robustness are carried out in this study using finite element analysis (FEA). Fluid–structure interaction (FSI) analysis is also carried out using the results of computational fluid dynamics (CFD) aimed at investigating the effect of fluid flow on the inlet section structural integrity. The selected design modifications are based on feasibility of GLCC© manufacturing and assembly for field applications. Different case studies incorporating sustained GLCC© internal pressure, dead weight loading, forces generated because of slug flow and high temperatures are analyzed and presented in this paper. The concept of holes cut out in baffle has been effective with no stresses or deformation in the baffle area. FSI simulation of slug flow has proved that FEA direct loading case studies are far more conservative.

Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

The Gas-Liquid Cylindrical Cyclone (GLCC©1) is a simple, compact and low-cost separator, which provides an economically attractive alternative to conventional gravity based separators over a wide range of applications. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. An in-depth evaluation of specific design modifications and their effectiveness on safety and structural robustness are carried out in this study using Finite Element Analysis. Fluid-Structure Interaction (FSI) analysis is also carried out utilizing the results of Computational Fluid Dynamics (CFD) aimed at investigating the effect of fluid flow on the inlet section structural integrity. The selected design modifications are based on feasibility of GLCC© manufacturing and assembly for field applications. Different case studies incorporating sustained GLCC© internal pressure, dead weight loading, forces generated because of slug flow and high temperatures are evaluated and presented. The concept of holes cutout in baffle have been proven effective with no stresses or deformation in the baffle area. FSI simulation of slug flow have proved that FEA direct loading case studies are far more conservative.


2017 ◽  
Vol 140 (5) ◽  
Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

The gas–liquid cylindrical cyclone (GLCC) is a simple, compact, and low-cost separator, which provides an economically attractive alternative to conventional gravity-based separators over a wide range of applications. Over the past 22 years, more than 6500 GLCCs have been installed around the world by the petroleum and related industries. However, to date no systematic study has been carried out on its structural integrity. The GLCC inlet section design is a key parameter, which is crucial for its performance and proper operation. This paper presents finite element analysis simulation results aimed at investigating the effect of various parameters on the inlet section structural integrity. Finally, recommendations on design modifications are presented, directed at strengthening the inlet section.


2021 ◽  
pp. 1-27
Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Abstract The Gas-Liquid Cylindrical Cyclone (GLCC©*) is a simple, compact and low-cost separator, which provides an economically attractive alternative to conventional gravity-based separators over a wide range of applications. More than 6,500 GLCC©'s have been installed in the field to date around the world over the past 2 decades. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. The flow behavior in the GLCC© body is highly dependent on the fluid velocities generated at the reduced area nozzle inlet. An earlier study (Kolla et al. [1]) recommended design modifications to the inlet section, based on safety and structural robustness. It is important to ensure that these proposed configuration modifications do not adversely affect the flow behavior at the inlet and the overall performance of the GLCC©. This paper presents a numerical study utilizing specific GLCC© field application working under 3 different case studies representing the flow entering the GLCC, separating light oil, steam flooded wells in Minas, Indonesia. Commercially available Computational Fluid Dynamics (CFD) software is utilized to analyze the hydrodynamics of flow with the proposed modifications of the inlet section for GLCC© field applications.


2016 ◽  
Vol 819 ◽  
pp. 319-325
Author(s):  
Abdalellah Omer Mohmmed ◽  
Mohammad Shakir Nasif ◽  
Hussain Hamoud Al-Kayiem ◽  
Zahid Ibrahim Al-Hashimy

It is well-known that when slug flow occurs in pipes it may result in damaging the pipe line. Therefore it is important to predict the slug occurrence and its effect. Slug flow regime is unsteady in nature and the pipelines conveying it are indeed susceptible to significant cyclic stresses. In this work, a numerical study has been conducted to investigate the interaction between the slug flow and solid pipe. Fluid Structure Interaction (FSI) coupling between 3-D Computational Fluid Dynamic (CFD) and 3-D pipeline model code has been developed to assess the stresses on the pipe due to slug flow. Time – dependent stresses results has been analyzed together with the slug characteristic along the pipe. Results revealed that the dynamic behavior of the pipelines is strongly affected by slug parameters. The FSI simulation results show that the maximum stresses occurred close to the pipe supports due to slug flow, where the pipe response to the exerted slug forces is extremely high. These stresses will subsequently cause fatigue damage which is likely reduce the total lifetime of the pipeline. Therefore a careful attention should be made during the design stage of the pipeline to account for these stresses. The system has been investigated under multiple water velocities and constant air velocity, the maximum stress was obtained at the water velocity of 0.505 m/s. Moreover, when the water velocity is increased from 0.502 to 1.003 m/s the maximum stress magnitude is decreased by 1.2% and when it is increased to 1.505 m/s the maximum stress is diminished by 3.6%.


Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

The Gas-Liquid Cylindrical Cyclone (GLCC©1) is a simple, compact and low-cost separator, which provides an economically attractive alternative to conventional gravity based separators over a wide range of applications. More than 6,500 GLCC©’s have been installed in the field to date around the world over the past 2 decades. The GLCC© inlet section design is a key parameter, which is crucial for its performance and proper operation. The flow behavior in the GLCC© body is highly dependent on the fluid velocities generated at the reduced area nozzle inlet. An earlier study (Kolla et al. [4]) recommended design modifications to the inlet section, based on safety and structural robustness. It is important to ensure that these proposed configuration modifications do not adversely affect the flow behavior at the inlet and the overall performance of the GLCC©. This study is carried out for a specific GLCC© field application, separating light oil, steam flooded wells in Minas, Indonesia. Computational Fluid Dynamics (CFD) software is used to analyze the hydrodynamics of flow with the proposed modifications of the inlet section for GLCC© field applications.


2020 ◽  
pp. 1-39
Author(s):  
Kushagra Singh ◽  
Farshid Sadeghi ◽  
Thomas Russell ◽  
Steven J. Lorenz ◽  
Wyatt L. Peterson ◽  
...  

Abstract This paper presents a partitioned fluid-structure interaction (FSI) solver to model elastohydrodynamic lubrication (EHL) of line contacts. The FSI model was constructed using the multiphysics simulation software ANSYS wherein an iterative implicit coupling scheme is implemented to facilitate the interaction between fluid and solid components. The model employs a finite volume method (FVM) based computational fluid dynamics (CFD) solver to determine the lubricant flow behavior using the Navier-Stokes equations. Additionally, the finite element method (FEM) is utilized to model the structural response of the solid. Fluid cavitation, compressibility, non-Newtonian lubricant rheology, load balance algorithm and dynamic meshing were incorporated in the FSI model. The pressure and film thickness results obtained from the model are presented for a wide range of loads, speeds, slide to roll ratios (SRR), surface dent, material properties (elastic plastic), etc. The model presents a detailed understanding of EHL contacts by removing any assumptions relative to the Reynolds equation. It provides the (i) two-dimensional variation of pressure, velocity, viscosity etc. in the fluid, and (ii) stress, elastic/plastic strain in the solid, simultaneously. The FSI model is robust, easy to implement and computationally efficient. It provides an effective approach to solve sophisticated EHL problems. The FSI model was used to investigate the effects of surface dents, plasticity and material inclusions under heavily loaded lubricated line contacts as can be found in gears and rolling element bearings. The results from the model exhibit excellent corroboration with published results based on the Reynolds equation solvers.


Author(s):  
Qiyue Lu ◽  
Alfonso Santiago ◽  
Seid Koric ◽  
Paula Cordoba

Abstract Fluid-Structure Interaction (FSI) simulations have applications to a wide range of engineering areas. One popular technique to solve FSI problems is the Arbitrary Lagrangian-Eulerian (ALE) method. Both academic and industry communities developed codes to implement the ALE method. One of them is Alya, a Finite Element Method (FEM) based code developed in Barcelona Supercomputing Center (BSC). By analyzing the application on a simplified artery case and compared to another commercial code, which is Finite Volume Method (FVM) based, this paper discusses the mathematical background of the solver for domains, and carries out verification work on Alya’s FSI capability. The results show that while both codes provide comparable FSI results, Alya has exhibited better robustness due to its Subgrid Scale (SGS) technique for stabilization of convective term and the subsequent numerical treatments. Thus this code opens the door for more extensive use of higher fidelity finite element based FSI methods in future.


2010 ◽  
Vol 19 (3) ◽  
pp. 096369351001900
Author(s):  
G. Mohamed ◽  
C. Soutis ◽  
A. Hodzic

A numerical study into the dynamic behaviour of hybrid pressurised barrels manufactured from GLARE (Glass fibre Reinforced laminate) has been performed using the Arbitrary-Lagrangian-Eulerian (ALE) method that accounts for fluid structure interaction within the explicit finite element software RADIOSS. The results high-lighted the importance of the geometrical features of the closed barrel when assessing the shock wave propagation of the blast wave. Also the effect of pre-pressurisation was studied which proved significant in providing additional internal energy to the system. It was concluded that pressurisation should be accounted in all future studies to model the dynamic crack growth and structural integrity of typical aircraft structures subjected to blast.


2007 ◽  
Vol 17 (06) ◽  
pp. 957-983 ◽  
Author(s):  
A. QUAINI ◽  
A. QUARTERONI

We address the numerical simulation of fluid-structure interaction problems characterized by a strong added-mass effect. We propose a semi-implicit coupling scheme based on an algebraic fractional-step method. The basic idea of a semi-implicit scheme consists in coupling implicitly the added-mass effect, while the other terms (dissipation, convection and geometrical nonlinearities) are treated explicitly. Thanks to this kind of explicit–implicit splitting, computational costs can be reduced (in comparison to fully implicit coupling algorithms) and the scheme remains stable for a wide range of discretization parameters. In this paper we derive this kind of splitting from the algebraic formulation of the coupled fluid-structure problem (after finite-element space discretization). From our knowledge, it is the first time that algebraic fractional step methods, used thus far only for fluid problems in computational domains with rigid boundaries, are applied to fluid-structure problems. In particular, for the specific semi-implicit method presented in this work, we adapt the Yosida scheme to the case of a coupled fluid-structure problem. This scheme relies on an approximate LU block factorization of the matrix obtained after the discretization in time and space of the fluid-structure system. We analyze the numerical performances of this scheme on 2D fluid-structure simulations performed with a simple 1D structure model.


2012 ◽  
Vol 12 (2) ◽  
pp. 337-377 ◽  
Author(s):  
Gene Hou ◽  
Jin Wang ◽  
Anita Layton

AbstractThe interactions between incompressible fluid flows and immersed structures are nonlinear multi-physics phenomena that have applications to a wide range of scientific and engineering disciplines. In this article, we review representative numerical methods based on conforming and non-conforming meshes that are currently available for computing fluid-structure interaction problems, with an emphasis on some of the recent developments in the field. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study in fluid-structure interactions.


Sign in / Sign up

Export Citation Format

Share Document