DECAY PROPERTY OF REGULARITY-LOSS TYPE AND NONLINEAR EFFECTS FOR DISSIPATIVE TIMOSHENKO SYSTEM

2008 ◽  
Vol 18 (07) ◽  
pp. 1001-1025 ◽  
Author(s):  
KENTARO IDE ◽  
SHUICHI KAWASHIMA

We consider the initial value problem for a nonlinear version of the dissipative Timoshenko system. This syetem verifies the decay property of regularity-loss type. To overcome this difficulty caused by the regularity-loss property, we employ the time weighed L2energy method which is combined with the optimal L2decay estimates for lower order derivatives of solutions. Then we show the global existence and asymptotic decay of solutions under smallness and enough regularity conditions on the initial data. Moreover, we show that the solution approaches the linear diffusion wave expressed in terms of the superposition of the heat kernels as time tends to infinity.

2008 ◽  
Vol 18 (05) ◽  
pp. 647-667 ◽  
Author(s):  
KENTARO IDE ◽  
KAZUO HARAMOTO ◽  
SHUICHI KAWASHIMA

We study the decay property of the dissipative Timoshenko system in the one-dimensional whole space. We derive the L2decay estimates of solutions in a general situation and observe that this decay structure is of the regularity-loss type. Also, we give a refinement of these decay estimates for some special initial data. Moreover, under enough regularity assumption on the initial data, we show that the solution approaches the linear diffusion wave expressed in terms of the heat kernels as time tends to infinity. The proof is based on the detailed pointwise estimates of solutions in the Fourier space.


2012 ◽  
Vol 22 (02) ◽  
pp. 1150012 ◽  
Author(s):  
YONGQIN LIU ◽  
SHUICHI KAWASHIMA

In this paper we consider the initial value problem for the Timoshenko system with a memory term. We construct the fundamental solution by using the Fourier–Laplace transform and obtain the solution formula of the problem. Moreover, applying the energy method in the Fourier space, we derive the pointwise estimate of solutions in the Fourier space, which gives a sharp decay estimate of solutions. It is shown that the decay property of the system is of the regularity-loss type and is weaker than that of the Timoshenko system with a frictional dissipation.


2021 ◽  
pp. 1-13
Author(s):  
Kita Naoyasu ◽  
Sato Takuya

This paper presents the optimality of decay estimate of solutions to the initial value problem of 1D Schrödinger equations containing a long-range dissipative nonlinearity, i.e., λ | u | 2 u. Our aim is to obtain the two results. One asserts that, if the L 2 -norm of a global solution, with an initial datum in the weighted Sobolev space, decays at the rate more rapid than ( log t ) − 1 / 2 , then it must be a trivial solution. The other asserts that there exists a solution decaying just at the rate of ( log t ) − 1 / 2 in L 2 .


2020 ◽  
Vol 20 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Suzhen Jiang ◽  
Kaifang Liao ◽  
Ting Wei

AbstractIn this study, we consider an inverse problem of recovering the initial value for a multi-dimensional time-fractional diffusion-wave equation. By using some additional boundary measured data, the uniqueness of the inverse initial value problem is proven by the Laplace transformation and the analytic continuation technique. The inverse problem is formulated to solve a Tikhonov-type optimization problem by using a finite-dimensional approximation. We test four numerical examples in one-dimensional and two-dimensional cases for verifying the effectiveness of the proposed algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Ruifeng Wu ◽  
Huilai Li ◽  
Tieru Wu

By using the polynomial expansion in the even order Bernoulli polynomials and using the linear combinations of the shifts of the functionf(x)(x∈ℝ)to approximate the derivatives off(x), we propose a family of modified even order Bernoulli-type multiquadric quasi-interpolants which do not require the derivatives of the function approximated at each node and can satisfy any degree polynomial reproduction property. Error estimate indicates that our operators could provide the desired precision by choosing a suitable shape-preserving parametercand a nonnegative integerm. Numerical comparisons show that this technique provides a higher degree of accuracy. Finally, applying our operators to the fitting of discrete solutions of initial value problems, we find that our method has smaller errors than the Runge-Kutta method of order 4 and Wang et al.’s quasi-interpolation scheme.


2006 ◽  
Vol 04 (03) ◽  
pp. 263-310 ◽  
Author(s):  
SEIJI UKAI ◽  
TONG YANG

We present a function space in which the Cauchy problem for the Boltzmann equation is well-posed globally in time near an absolute Maxwellian in a mild sense without any regularity conditions. The asymptotic stability of the absolute Maxwellian is also established in this space and, moreover, it is shown that the higher order spatial derivatives of the solutions vanish in time faster than the lower order derivatives. No smallness assumptions are imposed on the derivatives of the initial data, and the optimal decay rates are derived. Furthermore, the Boltzmann equation with a time-periodic source term is solved in the same space on the unique existence and stability of a time-periodic solution which has the same period as the source term. The proof is based on the spectral analysis of the linearized Boltzmann operator.


1997 ◽  
Vol 192 (1-4) ◽  
pp. 1-16 ◽  
Author(s):  
Murugesu Sivapalan ◽  
Bryson C. Bates ◽  
Jens E. Larsen

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Zhaowei Sheng ◽  
Shaoyong Lai ◽  
Yuan Ma ◽  
Xuanjun Luo

The existence of global weak solutions to the Cauchy problem for a generalized Camassa-Holm equation with a dissipative term is investigated in the spaceC([0,∞)×R)∩L∞([0,∞);H1(R))provided that its initial valueu0(x)belongs to the spaceH1(R). A one-sided super bound estimate and a space-time higher-norm estimate on the first-order derivatives of the solution with respect to the space variable are derived.


Sign in / Sign up

Export Citation Format

Share Document