HIGH ACCURACY METHOD FOR TURBULENT FLOW PROBLEMS

2012 ◽  
Vol 22 (06) ◽  
pp. 1250005 ◽  
Author(s):  
M. GUNZBURGER ◽  
A. LABOVSKY

We present a method of high-order temporal and spatial accuracy for flow problems with high Reynolds number. The method presented is stable, computationally cheap and gives an accurate approximation to the quantities sought. The direct numerical simulation of turbulent flows is computationally expensive or not even feasible. Hence, the method employs turbulence modeling. The two key ingredients are the temporal deferred correction, combined with the family of Approximate Deconvolution models, which allows for arbitrarily high order of accuracy in both spatial and temporal variables. We prove stability and accuracy for the two-step method; the method is shown to be second order accurate in time and in the filtering width.

2007 ◽  
Vol 2007 ◽  
pp. 1-26 ◽  
Author(s):  
V. G. Ferreira ◽  
A. C. Brandi ◽  
F. A. Kurokawa ◽  
P. Seleghim Jr. ◽  
A. Castelo ◽  
...  

In the computation of turbulent flows via turbulence modeling, the treatment of the convective terms is a key issue. In the present work, we present a numerical technique for simulating two-dimensional incompressible turbulent flows. In particular, the performance of the high Reynoldsκ-ɛmodel and a new high-order upwind scheme (adaptative QUICKEST by Kaibara et al. (2005)) is assessed for 2D confined and free-surface incompressible turbulent flows. The model equations are solved with the fractional-step projection method in primitive variables. Solutions are obtained by using an adaptation of the front tracking GENSMAC (Tomé and McKee (1994)) methodology for calculating fluid flows at high Reynolds numbers. The calculations are performed by using the 2D version of theFreeflowsimulation system (Castello et al. (2000)). A specific way of implementing wall functions is also tested and assessed. The numerical procedure is tested by solving three fluid flow problems, namely, turbulent flow over a backward-facing step, turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent free jet impinging onto a flat surface. The numerical method is then applied to solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free surface.


2019 ◽  
Vol 29 (05) ◽  
pp. 825-838 ◽  
Author(s):  
Yuri Bazilevs ◽  
Kenji Takizawa ◽  
Tayfun E. Tezduyar

In this lead paper of the special issue, we provide a brief summary of the stabilized and multiscale methods in fluid dynamics. We highlight the key features of the stabilized and multiscale scale methods, and variational methods in general, that make these approaches well suited for computational analysis of complex, unsteady flows encountered in modern science and engineering applications. We mainly focus on the recent developments. We discuss application of the variational multiscale (VMS) methods to fluid dynamics problems involving computational challenges associated with high-Reynolds-number flows, wall-bounded turbulent flows, flows on moving domains including subdomains in relative motion, fluid–structure interaction (FSI), and complex-fluid flows with FSI.


Author(s):  
Sauro Succi

This chapter introduces the main ideas behind the application of LBE methods to the problem of turbulence modeling, namely the simulation of flows which contain scales of motion too small to be resolved on present-day and foreseeable future computers. Many real-life flows of practical interest exhibit Reynolds numbers far too high to be directly simulated in full resolution on present-day computers and arguably for many years to come. This raises the challenge of predicting the behavior of highly turbulent flows without directly simulating all scales of motion which take part to turbulence dynamics, but only those that fall within the computer resolution at hand.


Author(s):  
Michael Leschziner ◽  
Ning Li ◽  
Fabrizio Tessicini

This paper provides a discussion of several aspects of the construction of approaches that combine statistical (Reynolds-averaged Navier–Stokes, RANS) models with large eddy simulation (LES), with the objective of making LES an economically viable method for predicting complex, high Reynolds number turbulent flows. The first part provides a review of alternative approaches, highlighting their rationale and major elements. Next, two particular methods are introduced in greater detail: one based on coupling near-wall RANS models to the outer LES domain on a single contiguous mesh, and the other involving the application of the RANS and LES procedures on separate zones, the former confined to a thin near-wall layer. Examples for their performance are included for channel flow and, in the case of the zonal strategy, for three separated flows. Finally, a discussion of prospects is given, as viewed from the writer's perspective.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
A. Ghidoni ◽  
A. Colombo ◽  
S. Rebay ◽  
F. Bassi

In the last decade, discontinuous Galerkin (DG) methods have been the subject of extensive research efforts because of their excellent performance in the high-order accurate discretization of advection-diffusion problems on general unstructured grids, and are nowadays finding use in several different applications. In this paper, the potential offered by a high-order accurate DG space discretization method with implicit time integration for the solution of the Reynolds-averaged Navier–Stokes equations coupled with the k-ω turbulence model is investigated in the numerical simulation of the turbulent flow through the well-known T106A turbine cascade. The numerical results demonstrate that, by exploiting high order accurate DG schemes, it is possible to compute accurate simulations of this flow on very coarse grids, with both the high-Reynolds and low-Reynolds number versions of the k-ω turbulence model.


1995 ◽  
Vol 48 (4) ◽  
pp. 189-212 ◽  
Author(s):  
G. J. Brereton ◽  
R. R. Mankbadi

Turbulent flow which undergoes organized temporal unsteadiness is a subject of great importance to unsteady aerodynamic and thermodynamic devices. Of the many classes of unsteady flows, those bounded by rigid smooth walls are particularly amenable to fundamental studies of unsteady turbulence and its modeling. These flows are presently being given increased attention as interest grows in the prospect of predicting non-equilibrium turbulence and because of their relevance to turbulence–acoustics interactions, in addition to their importance as unsteady flows in their own right. It is therefore timely to present a review of recent advances in this area, with particular emphasis placed on physical understanding of the turbulent processes in these flows and the development of turbulence models to predict them. A number of earlier reviews have been published on unsteady turbulent flows, which have tended to focus on specific aspects of certain flows. This review is intended to draw together, from the diverse literature on the subject, information on fundamental aspects of these flows which are relevant to improved understanding and development of predictive models. Of particular relevance are issues of instability and transition to turbulence in reciprocating flows, the robustness of coherent structures in wall-bounded flows to forced perturbations (in contrast to the relative ease of manipulation in free shear flows), unsteady scalar transport, improved measurement technology, recent contributions to target data for model testing and the quasi-steady and non-steady rapid distortion approaches to turbulence modeling in these flows. The present article aims to summarize recent contributions to this research area, with a view to consolidating comprehension of the well-known basics of these flows, and drawing attention to critical gaps in information which restrict our understanding of unsteady turbulent flows.


Author(s):  
Yan Jin

Abstract The turbulent flow in a compressor cascade is calculated by using a new simulation method, i.e., parameter extension simulation (PES). It is defined as the calculation of a turbulent flow with the help of a reference solution. A special large-eddy simulation (LES) method is developed to calculate the reference solution for PES. Then, the reference solution is extended to approximate the exact solution for the Navier-Stokes equations. The Richardson extrapolation is used to estimate the model error. The compressor cascade is made of NACA0065-009 airfoils. The Reynolds number 3.82 × 105 and the attack angles −2° to 7° are accounted for in the study. The effects of the end-walls, attack angle, and tripping bands on the flow are analyzed. The PES results are compared with the experimental data as well as the LES results using the Smagorinsky, k-equation and WALE subgrid models. The numerical results show that the PES requires a lower mesh resolution than the other LES methods. The details of the flow field including the laminar-turbulence transition can be directly captured from the PES results without introducing any additional model. These characteristics make the PES a potential method for simulating flows in turbomachinery with high Reynolds numbers.


2012 ◽  
Vol 12 (1) ◽  
pp. 1-41 ◽  
Author(s):  
Thibault Pringuey ◽  
R. Stewart Cant

AbstractIn this article, we detail the methodology developed to construct arbitrarily high order schemes — linear and WENO — on 3D mixed-element unstructured meshes made up of general convex polyhedral elements. The approach is tailored specifically for the solution of scalar level set equations for application to incompressible two-phase flow problems. The construction of WENO schemes on 3D unstructured meshes is notoriously difficult, as it involves a much higher level of complexity than 2D approaches. This due to the multiplicity of geometrical considerations introduced by the extra dimension, especially on mixed-element meshes. Therefore, we have specifically developed a number of algorithms to handle mixed-element meshes composed of convex polyhedra with convex polygonal faces. The contribution of this work concerns several areas of interest: the formulation of an improved methodology in 3D, the minimisation of computational runtime in the implementation through the maximum use of pre-processing operations, the generation of novel methods to handle complex 3D mixed-element meshes and finally the application of the method to the transport of a scalar level set.


Sign in / Sign up

Export Citation Format

Share Document