scholarly journals Intelligent Retrieval for Biodiversity

2016 ◽  
Vol 25 (01) ◽  
pp. 1550029
Author(s):  
M. Vilares Ferro ◽  
M. Fernández Gavilanes ◽  
A. Blanco González ◽  
C. Gómez-Rodríguez

A proposal for intelligent retrieval in the biodiversity domain is described. It applies natural language processing to integrate linguistic and domain knowledge in a mathematical model for information management, formalizing the notion of semantic similarity in different degrees. The goal is to provide computational tools to identify, extract and relate not only data but also scientific notions, even if the information available to start the process is not complete. The use of conceptual graphs as a basis for interpretation makes it possible to avoid the use of classic ontologies, whose start-up requires costly generation and maintenance protocols and also unnecessarily overload the accessing task for inexpert users. We exploit the automatic generation of these structures from raw texts through graphical and natural language interaction, at the same time providing a solid logical and linguistic foundation to sustain the curation of databases.

2021 ◽  
pp. 1063293X2098297
Author(s):  
Ivar Örn Arnarsson ◽  
Otto Frost ◽  
Emil Gustavsson ◽  
Mats Jirstrand ◽  
Johan Malmqvist

Product development companies collect data in form of Engineering Change Requests for logged design issues, tests, and product iterations. These documents are rich in unstructured data (e.g. free text). Previous research affirms that product developers find that current IT systems lack capabilities to accurately retrieve relevant documents with unstructured data. In this research, we demonstrate a method using Natural Language Processing and document clustering algorithms to find structurally or contextually related documents from databases containing Engineering Change Request documents. The aim is to radically decrease the time needed to effectively search for related engineering documents, organize search results, and create labeled clusters from these documents by utilizing Natural Language Processing algorithms. A domain knowledge expert at the case company evaluated the results and confirmed that the algorithms we applied managed to find relevant document clusters given the queries tested.


2021 ◽  
Vol 3 ◽  
Author(s):  
Marieke van Erp ◽  
Christian Reynolds ◽  
Diana Maynard ◽  
Alain Starke ◽  
Rebeca Ibáñez Martín ◽  
...  

In this paper, we discuss the use of natural language processing and artificial intelligence to analyze nutritional and sustainability aspects of recipes and food. We present the state-of-the-art and some use cases, followed by a discussion of challenges. Our perspective on addressing these is that while they typically have a technical nature, they nevertheless require an interdisciplinary approach combining natural language processing and artificial intelligence with expert domain knowledge to create practical tools and comprehensive analysis for the food domain.


1996 ◽  
Vol 16 ◽  
pp. 70-85 ◽  
Author(s):  
Thomas C. Rindflesch

Work in computational linguistics began very soon after the development of the first computers (Booth, Brandwood and Cleave 1958), yet in the intervening four decades there has been a pervasive feeling that progress in computer understanding of natural language has not been commensurate with progress in other computer applications. Recently, a number of prominent researchers in natural language processing met to assess the state of the discipline and discuss future directions (Bates and Weischedel 1993). The consensus of this meeting was that increased attention to large amounts of lexical and domain knowledge was essential for significant progress, and current research efforts in the field reflect this point of view.


2011 ◽  
Vol 181-182 ◽  
pp. 236-241
Author(s):  
Xian Yi Cheng ◽  
Chen Cheng ◽  
Qian Zhu

As a sort of formalizing tool of knowledge representation, Description Logics have been successfully applied in Information System, Software Engineering and Natural Language processing and so on. Description Logics also play a key role in text representation, Natural Language semantic interpretation and language ontology description. Description Logics have been logical basis of OWL which is an ontology language that is recommended by W3C. This paper discusses the description logic basic ideas under vocabulary semantic, context meaning, domain knowledge and background knowledge.


2020 ◽  
Vol 4 (1) ◽  
pp. 18-43
Author(s):  
Liuqing Li ◽  
Jack Geissinger ◽  
William A. Ingram ◽  
Edward A. Fox

AbstractNatural language processing (NLP) covers a large number of topics and tasks related to data and information management, leading to a complex and challenging teaching process. Meanwhile, problem-based learning is a teaching technique specifically designed to motivate students to learn efficiently, work collaboratively, and communicate effectively. With this aim, we developed a problem-based learning course for both undergraduate and graduate students to teach NLP. We provided student teams with big data sets, basic guidelines, cloud computing resources, and other aids to help different teams in summarizing two types of big collections: Web pages related to events, and electronic theses and dissertations (ETDs). Student teams then deployed different libraries, tools, methods, and algorithms to solve the task of big data text summarization. Summarization is an ideal problem to address learning NLP since it involves all levels of linguistics, as well as many of the tools and techniques used by NLP practitioners. The evaluation results showed that all teams generated coherent and readable summaries. Many summaries were of high quality and accurately described their corresponding events or ETD chapters, and the teams produced them along with NLP pipelines in a single semester. Further, both undergraduate and graduate students gave statistically significant positive feedback, relative to other courses in the Department of Computer Science. Accordingly, we encourage educators in the data and information management field to use our approach or similar methods in their teaching and hope that other researchers will also use our data sets and synergistic solutions to approach the new and challenging tasks we addressed.


Author(s):  
Ismael Teomiro ◽  
María Beatriz Pérez Cabello de Alba

In this article we use a mathematical model to encode the temporal properties of linguistic utterances across languages by means of mathematical objects—points, lines, segments, vectors and versors—and the relations established among them in a four-dimensional space. Such temporal properties are encoded through threedifferent systems: tense—past, present and future—which locates the utterance on a temporal line, aspect—perfectivity and progressivity—which sets the viewpoint of the speaker, and Aktionsart, which refers to the structural temporal properties of the utterance such as telicity—whether the event has an endpoint or not—dynamicity—whether a change is conveyed or not—and duration. This model aims to be language independent in order to allow for the codification of the temporal properties of utterances in any language, thus rendering it appropriate to be used as an interlingua in Natural Language Processing (NLP) applications. This wouldsignificantly improve the comprehension of natural language in search engines and automatic translation systems, to name two examples. Hence, our ultimate goal is for this model to achieve computational adequacy.


Author(s):  
NANA AMPAH ◽  
Matthew Sadiku ◽  
Omonowo Momoh ◽  
Sarhan Musa

Computational humanities is at the intersection of computing technologies and the disciplines of the humanities. Research in this field has steadily increased over the past years. Computational tools supporting textual search, large database analysis, data mining, network mapping, and natural language processing are employed by the humanities researcher.  This opens up new realms for analysis and understanding.  This paper provides a brief introduction into computational humanities.


2020 ◽  
Author(s):  
Xinping Bai ◽  
Zhongliang Lv ◽  
Hui Wang

<p>Marine Weather Bulletin is the main weather service product of China Central Meteorological Observatory. Based on five-kilometer grid forecast data, it comprehensively describes the forecast information of wind force, wind direction, sea fog level and visibility in eighteen offshore areas of China, issued three times a day. Its traditional production process is that the forecaster manually interprets the massive information from grid data, then manually describes in natural language, including the combined descriptions to highlight the overall trend, finally edits manually including inserting graphics and formatting, which causes low writing efficiency and quality deviation that cannot meet the timeliness, refinement and diversity. The automatic generation of marine weather bulletins has become an urgent business need.</p><p>This paper proposes a method of using GIS technology and natural language processing technology to develop a text feature extraction model for sea gales and sea fog, and finally using Aspose technology to automatically generate marine weather bulletins based on custom templates.</p><p>First, GIS technology is used to extract the spatiotemporal characteristics of meteorological information, which includes converting grid data into vector area data, performing GIS spatial overlay analysis and fusion analysis on the multi-level marine meteorological areas and Chinese sea areas to dig inside Information on the scale, Influence area, and time frequency of gale and fog in different geographic areas.</p><p>Next, natural language processing, as an important method of artificial intelligence, is performed on the spatiotemporal information of marine weather elements. Here, it is mainly based on statistical machine learning. By data mining from more than 1000 historical bulletins, Content planning focuses on putting large numbers of marine weather element words and cohesive words into automatic word segmentation, part-of-speech statistics and word extraction, then creating preliminarily classified text description templates of different elements. Through long machine learning processes, sentence planning refines sea area filtering and merging rules, wind force and wind direction merging rules, sea fog visibility describing rules, merging rules of different areas of the same sea area, merging rules of multiple forecast texts, etc. Based on these rules, omitting, referencing and merging methods are used to make the descriptions more smooth, natural and refined.  </p><p>Finally, based on Aspose technology, a custom template is used to automatically generate marine weather bulletins. Through file conversion, data mining, data filtering and noise removal of historical bulletins, a document template is established in which the constant domains and variable domains are divided and general formats are customized. Then use the Aspose tool to call the template, fill in its variable fields with actual information, and finally export it as an actual document.</p><p>Results show that the automatically generated text has a precise spatial description, accurate merge and no scales missed, the text sentence is smooth, semantically and grammatically correct, and conforms to forecaster's writing habits. The automatically generated bulletin effectively avoids common mistakes in manual editing and reduces many tedious manual labor. This study has been put into operation in China Central Meteorological Observatory, which has greatly mproved the efficiency of marine weather services.</p>


2020 ◽  
Vol 9 (05) ◽  
pp. 25039-25046 ◽  
Author(s):  
Rahul C Kore ◽  
Prachi Ray ◽  
Priyanka Lade ◽  
Amit Nerurkar

Reading legal documents are tedious and sometimes it requires domain knowledge related to that document. It is hard to read the full legal document without missing the key important sentences. With increasing number of legal documents it would be convenient to get the essential information from the document without having to go through the whole document. The purpose of this study is to understand a large legal document within a short duration of time. Summarization gives flexibility and convenience to the reader. Using vector representation of words, text ranking algorithms, similarity techniques, this study gives a way to produce the highest ranked sentences. Summarization produces the result in such a way that it covers the most vital information of the document in a concise manner. The paper proposes how the different natural language processing concepts can be used to produce the desired result and give readers the relief from going through the whole complex document. This study definitively presents the steps that are required to achieve the aim and elaborates all the algorithms used at each and every step in the process.


Sign in / Sign up

Export Citation Format

Share Document