scholarly journals On the connectedness of subcomplexes of a disk complex

2014 ◽  
Vol 23 (11) ◽  
pp. 1450063
Author(s):  
Jung Hoon Lee

For a boundary-reducible 3-manifold M with ∂M a genus-g surface, we show that if M admits a genus-(g + 1) Heegaard surface S, then the disk complex of S is simply connected. Also we consider the connectedness of the complex of reducing spheres. We investigate the intersection of two reducing spheres for a genus-3 Heegaard splitting of ( torus ) × I.

2013 ◽  
Vol 22 (05) ◽  
pp. 1350018 ◽  
Author(s):  
JESSE JOHNSON ◽  
HYAM RUBINSTEIN

The mapping class group of a Heegaard splitting is the group of connected components in the set of automorphisms of the ambient manifold that map the Heegaard surface onto itself. We find examples of elements of the mapping class group that are periodic, reducible and pseudo-Anosov on the Heegaard surface, but are isotopy trivial in the ambient manifold. We prove structural theorems about the first two classes, in particular showing that if a periodic element is trivial in the mapping class group of the ambient manifold, then the manifold is not hyperbolic.


2013 ◽  
Vol 2013 (679) ◽  
pp. 155-179 ◽  
Author(s):  
Jesse Johnson ◽  
Darryl McCullough

Abstract For a Heegaard surface Σ in a closed orientable 3-manifold M, we denote by ℋ(M, Σ) = Diff(M)/Diff(M, Σ) the space of Heegaard surfaces equivalent to the Heegaard splitting (M, Σ). Its path components are the isotopy classes of Heegaard splittings equivalent to (M, Σ). We describe H(M, Σ) in terms of Diff(M) and the Goeritz group of (M, Σ). In particular, for hyperbolic M each path component is a classifying space for the Goeritz group, and when the (Hempel) distance of (M, Σ) is greater than 3, each path component of ℋ(M, Σ) is contractible. For splittings of genus 0 or 1, we determine the complete homotopy type (modulo the Smale Conjecture for M in the cases when it is not known).


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anamaría Font ◽  
Bernardo Fraiman ◽  
Mariana Graña ◽  
Carmen A. Núñez ◽  
Héctor Parra De Freitas

Abstract Compactifications of the heterotic string on special Td/ℤ2 orbifolds realize a landscape of string models with 16 supercharges and a gauge group on the left-moving sector of reduced rank d + 8. The momenta of untwisted and twisted states span a lattice known as the Mikhailov lattice II(d), which is not self-dual for d > 1. By using computer algorithms which exploit the properties of lattice embeddings, we perform a systematic exploration of the moduli space for d ≤ 2, and give a list of maximally enhanced points where the U(1)d+8 enhances to a rank d + 8 non-Abelian gauge group. For d = 1, these groups are simply-laced and simply-connected, and in fact can be obtained from the Dynkin diagram of E10. For d = 2 there are also symplectic and doubly-connected groups. For the latter we find the precise form of their fundamental groups from embeddings of lattices into the dual of II(2). Our results easily generalize to d > 2.


Author(s):  
Fan Gao

Abstract For a unitary unramified genuine principal series representation of a covering group, we study the associated R-group. We prove a formula relating the R-group to the dimension of the Whittaker space for the irreducible constituents of such a principal series representation. Moreover, for certain saturated covers of a semisimple simply connected group, we also propose a simpler conjectural formula for such dimensions. This latter conjectural formula is verified in several cases, including covers of the symplectic groups.


2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Sameh Shenawy

Abstract Let $\mathcal {W}^{n}$ W n be the set of smooth complete simply connected n-dimensional manifolds without conjugate points. The Euclidean space and the hyperbolic space are examples of these manifolds. Let $W\in \mathcal {W}^{n}$ W ∈ W n and let A and B be two convex subsets of W. This note aims to investigate separation and slab horosphere separation of A and B. For example,sufficient conditions on A and B to be separated by a slab of horospheres are obtained. Existence and uniqueness of foot points and farthest points of a convex set A in $W\in \mathcal {W}$ W ∈ W are considered.


2021 ◽  
pp. 1-8
Author(s):  
DANIEL KASPROWSKI ◽  
MARKUS LAND

Abstract Let $\pi$ be a group satisfying the Farrell–Jones conjecture and assume that $B\pi$ is a 4-dimensional Poincaré duality space. We consider topological, closed, connected manifolds with fundamental group $\pi$ whose canonical map to $B\pi$ has degree 1, and show that two such manifolds are s-cobordant if and only if their equivariant intersection forms are isometric and they have the same Kirby–Siebenmann invariant. If $\pi$ is good in the sense of Freedman, it follows that two such manifolds are homeomorphic if and only if they are homotopy equivalent and have the same Kirby–Siebenmann invariant. This shows rigidity in many cases that lie between aspherical 4-manifolds, where rigidity is expected by Borel’s conjecture, and simply connected manifolds where rigidity is a consequence of Freedman’s classification results.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
François Dayrens ◽  
Simon Masnou ◽  
Matteo Novaga ◽  
Marco Pozzetta

AbstractWe introduce a notion of connected perimeter for planar sets defined as the lower semicontinuous envelope of perimeters of approximating sets which are measure-theoretically connected. A companion notion of simply connected perimeter is also studied. We prove a representation formula which links the connected perimeter, the classical perimeter, and the length of suitable Steiner trees. We also discuss the application of this notion to the existence of solutions to a nonlocal minimization problem with connectedness constraint.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yuri Berest ◽  
Ajay C. Ramadoss ◽  
Yining Zhang

Abstract Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the $S^1$ -equivariant homology $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ of the free loop space of X preserves the Hodge decomposition of $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ , making it a bigraded Lie algebra. We deduce this result from a general theorem on derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG Lie algebras. Our theorem settles a conjecture of [7].


Sign in / Sign up

Export Citation Format

Share Document