scholarly journals ON BLACK HOLE STABILITY IN CRITICAL GRAVITIES

2012 ◽  
Vol 21 (02) ◽  
pp. 1250020 ◽  
Author(s):  
HAISHAN LIU ◽  
H. LÜ ◽  
MINGXING LUO

We consider extended cosmological gravities with Ricci tensor and scalar squared terms in diverse dimensions. These theories admit solutions of Einstein metrics, including the Schwarzschild–Tangherlini AdS black holes, whose mass and entropy vanish at the critical point. We perform linearized analysis around the black holes and show that in general the spectrum consists of the usual spin-2 massless and ghost massive modes. We demonstrate that there is no exponentially-growing tachyon mode in the black holes. At the critical point, the massless spin-2 modes have zero energy whilst the massive spin-2 modes are replaced by the log modes. There always exist certain linear combination of massless and log modes that has negative energy. Thus the stability of the black holes requires that the log modes to be truncated out by the boundary condition.

2016 ◽  
Vol 94 (10) ◽  
pp. 1045-1053 ◽  
Author(s):  
Ahmad Sheykhi ◽  
Seyed Hossein Hendi ◽  
Fatemeh Naeimipour ◽  
Shahram Panahiyan ◽  
Behzad Eslam Panah

It was shown that with the combination of three Liouville-type dilaton potentials, one can derive dilaton black holes in the background of anti-de-Sitter (AdS) spaces. In this paper, we further extend the study on the dilaton AdS black holes by investigating their thermodynamic instability through a geometry approach. First, we review thermodynamic quantities of the solutions and check the validity of the first law of thermodynamics. Then, we investigate phase transitions and stability of the solutions. In particular, we disclose the effects of the dilaton field on the stability of the black holes. We also employ the geometrical approach toward thermodynamical behavior of the system and find that the divergencies in the Ricci scalar coincide with roots and divergencies in the heat capacity. We find that the behavior of the Ricci scalar around divergence points depends on the type of the phase transition.


Author(s):  
Emel Altas

Recently, it was shown that the conserved charges of asymptotically anti-de Sitter spacetimes can be written in an explicitly gauge-invariant way in terms of the linearized Riemann tensor and the Killing vectors. Here, we employ this construction to compute the mass and angular momenta of the [Formula: see text]-dimensional Kerr-AdS black holes, which is one of the most remarkable Einstein metrics generalizing the four-dimensional rotating black hole.


2004 ◽  
Vol 257 (2) ◽  
pp. 273-285 ◽  
Author(s):  
Yoshitake Hashimoto ◽  
Makoto Sakaguchi ◽  
Yukinori Yasui

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Ren Zhao ◽  
Mengsen Ma ◽  
Huaifan Li ◽  
Lichun Zhang

In this paper, we study thermodynamics of cylindrically symmetric black holes and calculate the equation of states and heat capacity of charged and rotating black strings. In the process, we treat the cosmological constant as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume. It is shown that, when taking the equivalence between the thermodynamic quantities of black strings and the ones of general thermodynamic system, the isothermal compressibility and heat capacity of black strings satisfy the stability conditions of thermodynamic equilibrium and no divergence points exist for heat capacity. Thus, we obtain the conclusion that the thermodynamic system relevant to black strings is stable and there is no second-order phase transition for AdS black holes in the cylindrically symmetric spacetime.


2021 ◽  
Vol 816 ◽  
pp. 136242
Author(s):  
M. Blagojević ◽  
B. Cvetković

1999 ◽  
Vol 60 (6) ◽  
Author(s):  
Andrew Chamblin ◽  
Roberto Emparan ◽  
Clifford V. Johnson ◽  
Robert C. Myers
Keyword(s):  

1993 ◽  
Vol 114 (3) ◽  
pp. 443-451
Author(s):  
Al Vitter

Stable holomorphic vector bundles over complex projective space ℙnhave been studied from both the differential-geometric and the algebraic-geometric points of view.On the differential-geometric side, the stability ofE-→ ℙncan be characterized by the existence of a unique hermitian–Einstein metric onE, i.e. a metric whose curvature matrix has trace-free part orthogonal to the Fubini–Study Kähler form of ℙn(see [6], [7], and [13]). Very little is known about this metric in general and the only explicit examples are the metrics on the tangent bundle of ℙnand the nullcorrelation bundle (see [9] and [10]).


Sign in / Sign up

Export Citation Format

Share Document