HOLOGRAPHIC SPHERICALLY SYMMETRIC METRICS

2007 ◽  
Vol 16 (06) ◽  
pp. 1603-1641 ◽  
Author(s):  
MICHAEL PETRI

The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

1953 ◽  
Vol 9 (1) ◽  
pp. 13-16 ◽  
Author(s):  
Paul Kustaanheimo

SummaryIt is shown that every spherically symmetric metric can be transformed into the isotropic form. As illustration an example is given.


2010 ◽  
Vol 19 (04) ◽  
pp. 548-557 ◽  
Author(s):  
D. VRETENAR ◽  
T. NIKŠIĆ ◽  
P. RING

A class of relativistic nuclear energy density functionals is explored, in which only nucleon degrees of freedom are explicitly used in the construction of effective interaction terms. Short-distance correlations, as well as intermediate and long-range dynamics, are encoded in the nucleon-density dependence of the strength functionals of an effective interaction Lagrangian. The resulting phenomenological effective interaction, adjusted to experimental binding energies of a large set of axially deformed nuclei, together with a new separable pairing interaction adjusted to reproduce the pairing gap in nuclear matter calculated with the Gogny force, is applied in triaxial relativistic Hartree-Bogoliubov calculations of sequences of heavy nuclei: Th , U , Pu , Cm , Cf , Fm , and No .


Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 739-746
Author(s):  
Andres Mauricio Kowalski ◽  
Angelo Plastino ◽  
Gaspar Gonzalez

In this paper, a reference to the semiclassical model, in which quantum degrees of freedom interact with classical ones, is considered. The classical limit of a maximum-entropy density matrix that describes the temporal evolution of such a system is analyzed. Here, it is analytically shown that, in the classical limit, it is possible to reproduce classical results. An example is classical chaos. This is done by means a pure-state density matrix, a rather unexpected result. It is shown that this is possible only if the quantum part of the system is in a special class of states.


2021 ◽  
Vol 45 (4) ◽  
pp. 335-339
Author(s):  
Mehdi Ghoumazi ◽  
Messaoud Hameurlain

A new study was presented on a new sensor based on two-dimensional photonic crystals (Phc's) to detect the following three organic materials: iodobenzene (C6H5I), fluorobenzene (C6H5F), chlorobenzene (C6H5Cl). These materials have dielectric constants (εr) equal to 2.623; 2.140; 2.318, respectively. The proposed sensor is a structure made of silicon rods submerged in air plus a ring resonator. The ring resonator is stuck between two horizontal waveguides. At the end of the ends of the structure there are four ports where port 1 and 2 belong to the top guide and port (3) and (4) the bottom one. In order to analyze the behavior of the sensor, a plane wave expansion approach (PWE) and the finite element method (FEM) are applied. Thanks to the MATLAB and COMSOL simulation software, we were able to obtain the following numerical results: the norm of the electric field, the total energy density and this last magnitude according to the refractive indices of the different organic materials used. We could observe variations in energy density for each material. So, this change is due to their refractive index which varies from one material to another. In this study, we have fixed the other parameters like the constant of the lattice "a" and the radius "r" and we are interested in the dielectric constants (εr) or more precisely the refractive index (n), the latter proves that it is one of the important parameters for detection.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850039 ◽  
Author(s):  
M. G. Ganiou ◽  
M. J. S. Houndjo ◽  
J. Tossa

We investigate in this paper the Landau–Lifshitz energy distribution in the framework of [Formula: see text] theory view as a modified version of Teleparallel theory. From some important Teleparallel theory results on the localization of energy, our investigations generalize the Landau–Lifshitz prescription from the computation of the energy–momentum complex to the framework of [Formula: see text] gravity as it is done in the modified versions of General Relativity. We compute the energy density in the first step for three plane-symmetric metrics in vacuum. We find for the second metric that the energy density vanishes independently of [Formula: see text] models. We find that the Teleparallel Landau–Lifshitz energy–momentum complex formulations for these metrics are different from those obtained in General Relativity for the same metrics. Second, the calculations are performed for the cosmic string spacetime metric. It results that the energy distribution depends on the mass [Formula: see text] and the radius [Formula: see text] of cosmic string and it is strongly affected by the parameter of the considered quadratic and cubic [Formula: see text] models. Our investigation with this metric induces interesting results susceptible to be tested with some astrophysics hypothesis.


Author(s):  
Aditya Nath Mishra ◽  
Guy Paić ◽  
C. Pajares ◽  
R. P. Scharenberg ◽  
B. K. Srivastava

In this paper, we analyzed charged particle transverse momentum spectra in high multiplicity events in proton–proton and nucleus–nucleus collisions at LHC energies from the ALICE experiment using the color string percolation model (CSPM). The color reduction factor and associated string density parameters are extracted for various multiplicity classes in [Formula: see text] collisions and centrality classes for heavy-ion collisions at various LHC energies to study the effect of collision geometry and collision energy. These parameters are used to extract the thermodynamical quantities temperature and the energy density of the hot nuclear matter. A universal scaling is observed in initial temperature when studied as a function of charged particle multiplicity scaled by transverse overlap area. From the measured initial energy density [Formula: see text] and the initial temperature T, a dimensionless quantity [Formula: see text] is constructed which is used to obtain the degrees of freedom (DOF) of the deconfined phase. A two-step behavior and a sudden increase in DOF of [Formula: see text]47 for the ideal gas, above the hadronization temperature (T [Formula: see text] 210[Formula: see text]MeV), are observed in case of heavy-ion collisions at LHC energies.


1988 ◽  
Vol 126 ◽  
pp. 691-692
Author(s):  
Herwig Dejonghe

A 1-parameter family of anisotropic models is presented. They all satisfy the Plummer law in the mass density, but have different velocity dispersions. Moreover, the stars are not confined to a particular subset of the total accessible phase space. This family is mathematically simple enough to be explored analytically in detail. The family is rich enough though to allow for a 3-parameter generalization which illustrates that even when both the mass density and the velocity dispersion profiles are required to be the same, a degeneracy in the possible distribution functions persists. The observational consequences of the degeneracy can be studied by calculating the observable radial velocity line profiles obtained with different distribution functions. It turns out that line profiles are relatively sensitive to changes in the distribution function. They therefore can be considered to be more natural observables when a determination of the distribution function is desired.


2007 ◽  
Vol 25 (12) ◽  
pp. 2479-2485 ◽  
Author(s):  
F. Chane-Ming ◽  
D. Faduilhe ◽  
J. Leveau

Abstract. Vertical temperature profiles obtained by radiosonde and Raman lidar measurements are used to investigate a climatology of total energy density of gravity waves (GW) in the Upper Troposphere (UT) and the Lower Stratosphere (LS) from 1992 to 2004 above Mahé (4° S, 55° E), Tromelin (15° S, 54° E) and La Réunion (21° S, 55° E) located in the tropical South-West Indian Ocean. The commonly used spectral index value (p≈5/3) of the intrinsic frequency spectrum is used for calculating estimated total energy density in the UT and LS. Estimated total energy density provides good estimation of total energy density in the LS but underestimates total energy density by one half in the UT above Mahé and Tromelin probably due to the activity of near-inertial frequency waves. Estimated total energy density reveals a strong seasonal variability as a function of latitude and convection as an evident active source of GW activity in the LS in austral summer. Above La Réunion, a semi-annual GW activity is observed in the LS with the signature of the subtropical barrier in the UT. Moreover, radiosondes and Raman lidar provide consistent GW surveys in the UT/LS at heights<23 km above La Réunion.


Sign in / Sign up

Export Citation Format

Share Document