ON THE RELATION BETWEEN THE WIDTH OF CHARGE BALANCE FUNCTION AND HADRONIZATION TIME IN RELATIVISTIC HEAVY ION COLLISION

2007 ◽  
Vol 16 (10) ◽  
pp. 3355-3362
Author(s):  
DU JIAXIN ◽  
LI NA ◽  
LIU LIANSHOU

A Monte Carlo study on the charge balance function in high energy hadron-hadron and relativistic heavy ion collisions are carried out using the Monte Carlo generators PYTHIA and AMPT, respectively. A strong dependence of the width of balance function on multiplicity is found in both cases. Using the mean parton-freeze-out time of a heavy-ion-collision event as the characteristic hadronization time for the event, it is found that for a fixed multiplicity interval the width of balance function is consistent with being independent of hadronization time.

2008 ◽  
Vol 32 (4) ◽  
pp. 308-328
Author(s):  
Wang Ya-Ping ◽  
Zhou Dai-Mei ◽  
Huang Rui-Dian ◽  
Cai Xu

2008 ◽  
Vol 32 (5) ◽  
pp. 400-418 ◽  
Author(s):  
Zhou Dai-Mei ◽  
Wang Ya-Ping ◽  
Wei Li-Hua ◽  
Cai Xu

2020 ◽  
Vol 12 (2) ◽  
pp. 215-221
Author(s):  
P. K. Sethy ◽  
Y. Kumar ◽  
S. S. Singh

It is believed that a transient strong magnetic field is generated in heavy-ion collision. The strength of this field perpendicular to the reaction plane and is estimated to be around eB=0.03GeV2 at RHIC and eB=0.3GeV2 at LHC. We study the effect of this magnetic field on dilepton yield using a modified quasi particle model. The results show a clear enhancement in dilepton yield and our result is in good agreement with the recently reported results.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450036 ◽  
Author(s):  
Ying-Hua Pan ◽  
Wei-Ning Zhang

Experiment and lattice simulation show that the quark–gluon plasma (QGP) system displays strong interaction between constituents at temperature a few times the critical temperature Tc. This QGP picture can be explained by assuming that the QGP matter above Tc is rich in different kinds of bound states, namely resonance-like QGP (RQGP). The chemical composition of the QGP system produced in ultra-relativistic heavy-ion collisions can be investigated through a general charge balance function which describes two-wave quark production during expansion afterward. In this paper, we investigate the signals of this RQGP through general charge balance functions. We find that the quasiparticles in QGP contribute a little to the balance functions because of their heavy masses. The balance functions reduce to the situation discussed before where only one-wave charge production is involved if only the quasiparticles in QGP are considered. However, the baryonic bound states in QGP have a significant effect on the balance function [Formula: see text], causing a dip in the [Formula: see text] balance function at small Δy. The existence of the binary and baryonic bound states amplify the negative dip of the balance function BpK-(Δy) at Δy ∽ 1.


2013 ◽  
Vol 44 (9) ◽  
pp. 1905
Author(s):  
W. Al-Harbi ◽  
T. Hussein

2008 ◽  
Vol 32 (9) ◽  
pp. 714-727
Author(s):  
Wang Ya-Ping ◽  
Zhou Dai-Mei ◽  
Cai Xu

2021 ◽  
pp. 2150152
Author(s):  
Abhisek Saha ◽  
Soma Sanyal

In this paper, we study temperature fluctuations in the initial stages of the relativistic heavy ion collision using a multiphase transport model. We consider the plasma in the initial stages after collision before it has a chance to equilibrate. We have considered [Formula: see text] collision with a center-of-mass energy of 200 GeV. We use the nonextensive Tsallis statistics to find the entropic index in the partonic stages of the relativistic heavy ion collisions. We find that the temperature and the entropic index have a linear relationship during the partonic stages of the heavy ion collision. This has already been observed in the hadronic phase. A detailed analysis of the dependence of the entropic index on the system shows that for increasing spacetime rapidity, the entropic index of the partonic system increases. The entropic index also depends on the beam collision energy. The calculation of the entropic index from the experimental data fitting of the transverse momenta deals with the hadronic phase. However, our study shows that the behavior of the entropic index in the initial nonequilibrium stage of the collision is very similar to the behavior of the entropic index in the hadronic stage.


2021 ◽  
Vol 57 (12) ◽  
pp. 1205
Author(s):  
M. Ayaz Ahmad ◽  
Shafiq Ahmad

An attempt has been made to study the angular characteristics of heavy ion collision at high energy in the interactions of 28Si nuclei using with nuclear emulsion. The KNO scaling behavior in terms of the multiplicity distribution has been studied. A simplest universal function has been used to represent the present experimental data.


Sign in / Sign up

Export Citation Format

Share Document