scholarly journals ASYMMETRY AND SPIN-ORBIT EFFECTS IN BINDING ENERGY IN THE EFFECTIVE NUCLEAR SURFACE APPROXIMATION

2009 ◽  
Vol 18 (04) ◽  
pp. 885-891 ◽  
Author(s):  
A. G. MAGNER ◽  
A. I. SANZHUR ◽  
A. M. GZHEBINSKY

Isoscalar and isovector particle densities are derived analytically by using the approximation of a sharp edged nucleus within the local energy density approach with the proton-neutron asymmetry and spin-orbit effects. Equations for the effective nuclear-surface shapes as collective variables are derived up to the higher order corrections in the form of the macroscopic boundary conditions. The analytical expressions for the isoscalar and isovector tension coefficients of the nuclear surface binding energy and the finite-size corrections to the β stability line are obtained.

2019 ◽  
pp. 667-686
Author(s):  
Hans-Peter Eckle

The Bethe ansatz genuinely considers a finite system. The extraction of finite-size results from the Bethe ansatz equations is of genuine interest, especially against the background of the results of finite-size scaling and conformal symmetry in finite geometries. The mathematical techniques introduced in chapter 19 permit a systematic treatment in this chapter of finite-size corrections as corrections to the thermodynamic limit of the system. The application of the Euler-Maclaurin formula transforming finite sums into integrals and finite-size corrections transforms the Bethe ansatz equations into Wiener–Hopf integral equations with inhomogeneities representing the finite-size corrections solvable using the Wiener–Hopf technique. The results can be compared to results for finite systems obtained from other approaches that are independent of the Bethe ansatz method. It briefly discusses higher-order corrections and offers a general assessment of the finite-size method.


2017 ◽  
Vol 26 (3) ◽  
pp. 165-171 ◽  
Author(s):  
I. M. Karandashev ◽  
B. V. Kryzhanovsky ◽  
M. Yu. Malsagov

2008 ◽  
Vol 22 (12) ◽  
pp. 1923-1932
Author(s):  
JIA LIU ◽  
ZI-YU CHEN

The influence of a perpendicular magnetic field on a bound polaron near the interface of a polar–polar semiconductor with Rashba effect has been investigated. The material is based on a GaAs / Al x Ga 1-x As heterojunction and the Al concentration varying from 0.2 ≤ x ≤ 0.4 is the critical value below which the Al x Ga 1-x As is a direct band gap semiconductor.The external magnetic field strongly altered the ground state binding energy of the polaron and the Rashba spin–orbit (SO) interaction originating from the inversion asymmetry in the heterostructure splitting of the ground state binding energy of the bound polaron. How the ground state binding energy will be with the change of the external magnetic field, the location of a single impurity and the electron area density have been shown in this paper, taking into account the SO coupling. The contribution of the phonons are also considered. It is found that the spin-splitting states of the bound polaron are more stable, and, in the condition of weak magnetic field, the Zeeman effect can be neglected.


Sign in / Sign up

Export Citation Format

Share Document