RISK OF DISEASE-SELECTIVE PREDATION IN AN INFECTED PREY-PREDATOR SYSTEM

2009 ◽  
Vol 17 (01) ◽  
pp. 111-124 ◽  
Author(s):  
SHARIFUL ALAM

In this paper the mathematical model of disease-selective predation as proposed by Roy and Chattopadhyay10 is considered to identify the true risk of selective predation where the predator can recognize the infected prey and avoids those during predation. Furthermore, the model is modified by adding a discrete time delay in the term involving the gestation of prey by the predator and analyzed both numerically and analytically to review the risk factors.

Author(s):  
Ombaki Richard ◽  
Kerongo Joash ◽  
Okwoyo M. James

Pollution of sub-surface water reservoirs mainly rivers and streams through contaminated water point sources (CWPS) was studied. The objective was to formulate a discrete time delay mathematical model which describes the dynamics of reservoir pollution using mixing-problem processes that involve single species contaminants such as nitrates, phosphorous and detergents. The concentration  of pollutants was expressed as a function of the inflow and outflow rates using the principle for the conservation of mass. Systems of ODEs generated from principles of mixing problems were refined into a system of DDEs so that the concentration of pollutant leaving the reservoir at time would be determined at some earlier instant, for the delay. The formulated model is a mathematical discrete time delay model which would be used to describe the dynamics of sub-surface water reservoir pollution. The results from the validation of the model were analyzed   to determine how time delays in the mixing processes affect the rate of particle movement in water reservoirs.


1995 ◽  
Vol 03 (02) ◽  
pp. 447-455
Author(s):  
FORTUNATA SOLIMANO

A mathematical model for the drug delivery to macrophages of the tissues by using a preassigned cohort of red blood cells loaded with a drug is presented. This model is a system of three nonlinear differential equations, with a discrete time delay and an input depending on the time. The input should be controlled in order to obtain the longest duration of the therapeutic effect.


2000 ◽  
Vol 33 (14) ◽  
pp. 261-266
Author(s):  
Sophie Tarbouriech ◽  
Germain Garcia ◽  
Pedro L.D. Peres ◽  
Isabelle Queinnec

Sign in / Sign up

Export Citation Format

Share Document