EXISTENCE OF TRAVELLING WAVES IN NONLINEAR SI EPIDEMIC MODELS

2009 ◽  
Vol 17 (04) ◽  
pp. 643-657 ◽  
Author(s):  
FEN-FEN ZHANG ◽  
GANG HUO ◽  
QUAN-XING LIU ◽  
GUI-QUAN SUN ◽  
ZHEN JIN

In this paper, we investigate a spatially extended SI epidemic system with a nonlinear incidence rate. Using mathematical analysis, we study the existence of a heteroclinic orbit connecting two equilibrium points in R3 which corresponds to a travelling wave solution connecting the disease-free and endemic equilibria for the reaction-diffusion system. In other words, the travelling wave solutions of the model are studied to determine the speed of disease dissemination, form the biological point of view. Moreover, this wave speed is obtained as a function of the model's parameters, in order to assess the control strategies. Also, our theoretical results are confirmed by numerical simulations. The obtained results confirm that travelling wave can enhance the spread of the disease, which can provide some insights into controlling the disease.

2017 ◽  
Vol 1 ◽  
pp. 1 ◽  
Author(s):  
Valaire Yatat ◽  
Yves Dumont

This paper deals with the problem of travelling wave solutions in a scalar impulsive FKPP-like equation. It is a first step of a more general study that aims to address existence of travelling wave solutions for systems of impulsive reaction-diffusion equations that model ecological systems dynamics such as fire-prone savannas. Using results on scalar recursion equations, we show existence of populated vs. extinction travelling waves invasion and compute an explicit expression of their spreading speed (characterized as the minimal speed of such travelling waves). In particular, we find that the spreading speed explicitly depends on the time between two successive impulses. In addition, we carry out a comparison with the case of time-continuous events. We also show that depending on the time between two successive impulses, the spreading speed with pulse events could be lower, equal or greater than the spreading speed in the case of time-continuous events. Finally, we apply our results to a model of fire-prone grasslands and show that pulse fires event may slow down the grassland vs. bare soil invasion speed.


2020 ◽  
Vol 38 (2) ◽  
pp. 133-163
Author(s):  
Cristhian Montoya ◽  
Jhoana P. Romero Leiton

In this work, two mathematical models for malaria under resistance are presented. More precisely, the first model shows the interaction between humans and mosquitoes inside a patch under infection of malaria when the human population is resistant to antimalarial drug and mosquitoes population is resistant to insecticides. For the second model, human–mosquitoes population movements in two patches is analyzed under the same malaria transmission dynamic established in a patch. For a single patch, existence and stability conditions for the equilibrium solutions in terms of the local basic reproductive number are developed. These results reveal the existence of a forward bifurcation and the global stability of disease–free equilibrium. In the case of two patches, a theoretical and numerical framework on sensitivity analysis of parameters is presented. After that, the use of antimalarial drugs and insecticides are incorporated as control strategies and an optimal control problem is formulated. Numerical experiments are carried out in both models to show the feasibility of our theoretical results.


In this paper we continue our study of some of the qualitative features of chemical polymerization processes by considering a reaction-diffusion equation for the chemical concentration in which the diffusivity vanishes abruptly at a finite concentration. The effect of this diffusivity cut-off is to create two distinct process zones; in one there is both reaction and diffusion and in the other there is only reaction. These zones are separated by an interface across which there is a jump in concentration gradient. Our analysis is focused on both the initial development of this interface and the large time evolution of the system into a travelling wave form. Some distinct differences from our previous analysis of smoothly vanishing diffusivity are found.


Author(s):  
Shangbing Ai ◽  
Wenzhang Huang

The existence and uniqueness of travelling-wave solutions is investigated for a system of two reaction–diffusion equations where one diffusion constant vanishes. The system arises in population dynamics and epidemiology. Travelling-wave solutions satisfy a three-dimensional system about (u, u′, ν), whose equilibria lie on the u-axis. Our main result shows that, given any wave speed c > 0, the unstable manifold at any point (a, 0, 0) on the u-axis, where a ∈ (0, γ) and γ is a positive number, provides a travelling-wave solution connecting another point (b, 0, 0) on the u-axis, where b:= b(a) ∈ (γ, ∞), and furthermore, b(·): (0, γ) → (γ, ∞) is continuous and bijective


Author(s):  
Teresa Faria ◽  
Wenzhang Huang ◽  
Jianhong Wu

We develop a new approach to obtain the existence of travelling wave solutions for reaction–diffusion equations with delayed non-local response. The approach is based on an abstract formulation of the wave profile as a solution of an operational equation in a certain Banach space, coupled with an index formula of the associated Fredholm operator and some careful estimation of the nonlinear perturbation. The general result relates the existence of travelling wave solutions to the existence of heteroclinic connecting orbits of a corresponding functional differential equation, and this result is illustrated by an application to a model describing the population growth when the species has two age classes and the diffusion of the individual during the maturation process leads to an interesting non-local and delayed response for the matured population.


The possibility of travelling reaction-diffusion waves developing in the isothermal chemical system governed by the cubic autocatalytic reaction A + 2B → 3B (rate k 3 ab 2 ) coupled with either the linear decay step B → C (rate k 2 b ) or the quadratic decay step B + B → C (rate k 4 b 2 ) is examined. Two simple solutions are obtained,namely the well-stirred analogue of the spatially inhomogeneous problem and the solution for small input of the autocatalyst B. Both of these suggest that, for the quadratic decay case, a wave will develop only if the non-dimensional parameter k ═ k 4 / k 3 a 0 < 1 (where a 0 is the initial concentration of the reactant A), with there being no restriction on the initial input of the autocatalyst B. However, for the linear decay case the initiation of a travelling wave depends on the parameter v ═ k 2 / k 3 a 2 0 and that, in addition, there is an input threshold on B before the formation of a wave will occur. The equations governing the fully developed travelling waves are then considered and it is shown that for the quadratic decay case the situation is similar to previous work in quadratic autocatalysis with linear decay, with a necessary condition for the existence of a travelling-wave solution being that K < 1. However, the case of linear decay is quite different, with a necessary condition for the existence of a travelling wave solution now found to be v < 1/4 Numerical solutions of the equations governing this case reveal further that a solution exists only for v < v c , with v c ≈ 0.0465, and that there are two branches of solution for 0 < v < v c . The behaviour of these lower branch solutions as v → 0 is discussed. The initial-value problem is then considered. For the quadratic decay case it is shown that the uniform state a ═ a 0 , b ═ 0 is globally asymptotically stable (i. e. a → a 0 , b → 0 uniformly for large times) for all k > 1. For the linear decay case it is shown that the development of a travelling wave requires β 0 > v (where β 0 is a measure of the initial input of B) for v < v c . These theoretical results are then complemented by numerical solutions of the initial-value problem for both cases, which confirm the various predictions of the theory. The behaviour of the solution of the equations governing the travelling waves is then discussed in the limits K → 0, v → 0 and K → 1. In the first case the solution approaches the solution for K ═ 0 (or v =0) on the length scale of the reaction-diffusion front, with there being a long tail region of length scale O ( K -1 ) (or O ( v -1 )) in which the autocatalyst B decays to zero. In the latter case we find that the concentration of reactant A is 1 + O [(1 - k )] and autocatalyst B is O[(1 - k 2 ] with the thickness of the reaction-diffusion front becoming large, of thickness O [(1- k ) -3/2 ].


Author(s):  
N. El Khatib ◽  
S. Génieys ◽  
B. Kazmierczak ◽  
V. Volpert

Atherosclerosis is an inflammatory disease. The atherosclerosis process starts when low-density lipoproteins (LDLs) enter the intima of the blood vessel, where they are oxidized (ox-LDLs). The anti-inflammatory response triggers the recruitment of monocytes. Once in the intima, the monocytes are transformed into macrophages and foam cells, leading to the production of inflammatory cytokines and further recruitment of monocytes. This auto-amplified process leads to the formation of an atherosclerotic plaque and, possibly, to its rupture. In this paper we develop two mathematical models based on reaction–diffusion equations in order to explain the inflammatory process. The first model is one-dimensional: it does not consider the intima’s thickness and shows that low ox-LDL concentrations in the intima do not lead to a chronic inflammatory reaction. Intermediate ox-LDL concentrations correspond to a bistable system, which can lead to a travelling wave that can be initiated by certain conditions, such as infection or injury. High ox-LDL concentrations correspond to a monostable system, and even a small perturbation of the non-inflammatory case leads to travelling-wave propagation, which corresponds to a chronic inflammatory response. The second model we suggest is two-dimensional: it represents a reaction–diffusion system in a strip with nonlinear boundary conditions to describe the recruitment of monocytes as a function of the cytokines’ concentration. We prove the existence of travelling waves and confirm our previous results, which show that atherosclerosis develops as a reaction–diffusion wave. The results of the two models are confirmed by numerical simulations. The latter show that the two-dimensional model converges to the one-dimensional one if the thickness of the intima tends to zero.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hao Wen ◽  
Jianhua Huang ◽  
Yuhong Li

<p style='text-indent:20px;'>We consider the cooperative system driven by a multiplicative It\^o type white noise. The existence and their approximations of the travelling wave solutions are proven. With a moderately strong noise, the travelling wave solutions are constricted by choosing a suitable marker of wavefront. Moreover, the stochastic Feynman-Kac formula, sup-solution, sub-solution and equilibrium points of the dynamical system corresponding to the stochastic cooperative system are utilized to estimate the asymptotic wave speed, which is closely related to the white noise.</p>


Author(s):  
Haileyesus Tessema Alemneh ◽  
Getachew Teshome Telahun

In this paper we developed a deterministic mathematical model of the pandemic COVID-19 transmission in Ethiopia, which allows transmission by exposed humans. We proposed an SEIR model using system of ordinary differential equations. First the major qualitative analysis, like the disease free equilibruim point, endemic equilibruim point, basic reproduction number, stability analysis of equilibrium points and sensitivity analysis was rigorously analysed. Second, we introduced time dependent controls to the basic model and extended to an optimal control model of the disease. We then analysed using Pontryagins Maximum Principle to derive necessary conditions for the optimal control of the pandemic. The numerical simulation indicated that, an integrated strategy effective in controling the epidemic and the gvernment must apply all control strategies in combating COVID-19 at short period of time.


2019 ◽  
Vol 31 (3) ◽  
pp. 470-510 ◽  
Author(s):  
JE-CHIANG TSAI ◽  
M. HUMAYUN KABIR ◽  
MASAYASU MIMURA

AbstractRecently we have proposed a monostable reaction-diffusion system to explain the Neolithic transition from hunter-gatherer life to farmer life in Europe. The system is described by a three-component system for the populations of hunter-gatherer (H), sedentary farmer (F1) and migratory one (F2). The conversion between F1 and F2 is specified by such a way that if the total farmers F1 + F2 are overcrowded, F1 actively changes to F2, while if it is less crowded, the situation is vice versa. In order to include this property in the system, the system incorporates a critical parameter (say F0) depending on the development of farming technology in a monotonically increasing way. It determines whether the total farmers are either over crowded (F1 + F2 >F0) or less crowded (F1 + F2 <F0) ( [9, 20]). Previous numerical studies indicate that the structure of travelling wave solutions of the system is qualitatively similar to the one of the Fisher-KPP equation, that the asymptotically expanding velocity of farmers is equal to the minimal velocity (say cm(F0)) of travelling wave solutions, and that cm(F0) is monotonically decreasing as F0 increases. The latter result suggests that the development of farming technology suppresses the expanding velocity of farmers. As a partial analytical result to this property, the purpose of this paper is to consider the two limiting cases where F0 = 0 and F0 → ∞, and to prove cm(0)>cm(∞).


Sign in / Sign up

Export Citation Format

Share Document