THE ROLE OF ADDITIONAL FOOD IN A PREDATOR–PREY MODEL WITH A PREY REFUGE

2016 ◽  
Vol 24 (02n03) ◽  
pp. 345-365 ◽  
Author(s):  
SUDIP SAMANTA ◽  
RIKHIYA DHAR ◽  
IBRAHIM M. ELMOJTABA ◽  
JOYDEV CHATTOPADHYAY

In this paper, we propose and analyze a predator–prey model with a prey refuge and additional food for predators. We study the impact of a prey refuge on the stability dynamics, when a constant proportion or a constant number of prey moves to the refuge area. The system dynamics are studied using both analytical and numerical techniques. We observe that the prey refuge can replace the predator–prey oscillations by a stable equilibrium if the refuge size crosses a threshold value. It is also observed that, if the refuge size is very high, then the extinction of the predator population is certain. Further, we observe that enhancement of additional food for predators prevents the extinction of the predator and also replaces the stable limit cycle with a stable equilibrium. Our results suggest that additional food for the predators enhances the stability and persistence of the system. Extensive numerical experiments are performed to illustrate our analytical findings.

2020 ◽  
Vol 30 (13) ◽  
pp. 2050194
Author(s):  
Absos Ali Shaikh ◽  
Harekrishna Das

This article describes the dynamics of a predator–prey model with disease in predator population and prey population subject to Allee effect. The positivity and boundedness of the solutions of the system have been determined. The existence of equilibria of the system and the stability of those equilibria are analyzed when Allee effect is present. The main objective of this study is to investigate the impact of Allee effect and it is observed that the system experiences Hopf bifurcation and chaos due to Allee effect. The results obtained from the model may be useful for analyzing the real-world ecological and eco-epidemiological systems.


2010 ◽  
Vol 15 (4) ◽  
pp. 473-491 ◽  
Author(s):  
A. K. Pal ◽  
G. P. Samanta

The present paper deals with the problem of a predator-prey model incorporating a prey refuge with disease in the prey-population. We assume the predator population will prefer only infected population for their diet as those are more vulnerable. Dynamical behaviours such as boundedness, permanence, local and global stabilities are addressed. We have also studied the effect of discrete time delay on the model. The length of delay preserving the stability is also estimated. Computer simulations are carried out to illustrate our analytical findings.


2019 ◽  
Vol 29 (04) ◽  
pp. 1950055
Author(s):  
Fengrong Zhang ◽  
Yan Li ◽  
Changpin Li

In this paper, we consider a delayed diffusive predator–prey model with Leslie–Gower term and herd behavior subject to Neumann boundary conditions. We are mainly concerned with the impact of time delay on the stability of this model. First, for delayed differential equations and delayed-diffusive differential equations, the stability of the positive equilibrium and the existence of Hopf bifurcation are investigated respectively. It is observed that when time delay continues to increase and crosses through some critical values, a family of homogeneous and inhomogeneous periodic solutions emerge. Then, the explicit formula for determining the stability and direction of bifurcating periodic solutions are also derived by employing the normal form theory and center manifold theorem for partial functional differential equations. Finally, some numerical simulations are shown to support the analytical results.


2018 ◽  
Vol 11 (07) ◽  
pp. 1850089 ◽  
Author(s):  
Saheb Pal ◽  
Sourav Kumar Sasmal ◽  
Nikhil Pal

The stability of the predator–prey model subject to the Allee effect is an interesting topic in recent times. In this paper, we investigate the impact of weak Allee effect on the stability of a discrete-time predator–prey model with Holling type-IV functional response. The mathematical features of the proposed model are analyzed with the help of equilibrium analysis, stability analysis, and bifurcation theory. We provide sufficient conditions for the flip bifurcation by considering Allee parameter as the bifurcation parameter. We observe that the model becomes stable from chaotic dynamics as the Allee parameter increases. Further, we observe bi-stability behavior of the model between only prey existence equilibrium and the coexistence equilibrium. Our analytical findings are illustrated through numerical simulations.


2019 ◽  
Vol 74 (7) ◽  
pp. 581-595 ◽  
Author(s):  
Saheb Pal ◽  
Subrata Majhi ◽  
Sutapa Mandal ◽  
Nikhil Pal

AbstractIn the present article, we investigate the impact of fear effect in a predator–prey model, where predator–prey interaction follows Beddington–DeAngelis functional response. We consider that due to fear of predator the birth rate of prey population reduces. Mathematical properties, such as persistence, equilibria analysis, local and global stability analysis, and bifurcation analysis, have been investigated. We observe that an increase in the cost of fear destabilizes the system and produces periodic solutions via supercritical Hopf bifurcation. However, with further increase in the strength of fear, system undergoes another Hopf bifurcation and becomes stable. The stability of the Hopf-bifurcating periodic solutions is obtained by computing the first Lyapunov coefficient. Our results suggest that fear of predation risk can have both stabilizing and destabilizing effects.


2021 ◽  
Vol 84 (1-2) ◽  
Author(s):  
Deeptajyoti Sen ◽  
Saktipada Ghorai ◽  
Malay Banerjee ◽  
Andrew Morozov

AbstractThe use of predator–prey models in theoretical ecology has a long history, and the model equations have largely evolved since the original Lotka–Volterra system towards more realistic descriptions of the processes of predation, reproduction and mortality. One important aspect is the recognition of the fact that the growth of a population can be subject to an Allee effect, where the per capita growth rate increases with the population density. Including an Allee effect has been shown to fundamentally change predator–prey dynamics and strongly impact species persistence, but previous studies mostly focused on scenarios of an Allee effect in the prey population. Here we explore a predator–prey model with an ecologically important case of the Allee effect in the predator population where it occurs in the numerical response of predator without affecting its functional response. Biologically, this can result from various scenarios such as a lack of mating partners, sperm limitation and cooperative breeding mechanisms, among others. Unlike previous studies, we consider here a generic mathematical formulation of the Allee effect without specifying a concrete parameterisation of the functional form, and analyse the possible local bifurcations in the system. Further, we explore the global bifurcation structure of the model and its possible dynamical regimes for three different concrete parameterisations of the Allee effect. The model possesses a complex bifurcation structure: there can be multiple coexistence states including two stable limit cycles. Inclusion of the Allee effect in the predator generally has a destabilising effect on the coexistence equilibrium. We also show that regardless of the parametrisation of the Allee effect, enrichment of the environment will eventually result in extinction of the predator population.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Heping Jiang ◽  
Huiping Fang ◽  
Yongfeng Wu

Abstract This paper mainly aims to consider the dynamical behaviors of a diffusive delayed predator–prey system with Smith growth and herd behavior subject to the homogeneous Neumann boundary condition. For the analysis of the predator–prey model, we have studied the existence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then we have proved the stability of the periodic solution by calculating the normal form on the center of manifold which is associated to the Hopf bifurcation points. Some numerical simulations are also carried out in order to validate our analysis findings. The implications of our analytical and numerical findings are discussed critically.


Sign in / Sign up

Export Citation Format

Share Document