Estimation of Two-Phase Relative Permeabilities Based on Treelike Fractal Model and Pressure Drop Around Gas Bubbles in Porous Media

Fractals ◽  
2021 ◽  
Author(s):  
Keming Gu ◽  
Zhengfu Ning ◽  
Zhongqi Mu ◽  
Fangtao Lv
2016 ◽  
Vol 94 ◽  
pp. 422-432 ◽  
Author(s):  
N. Chikhi ◽  
R. Clavier ◽  
J.-P. Laurent ◽  
F. Fichot ◽  
M. Quintard

2019 ◽  
Vol 112 ◽  
pp. 13-26
Author(s):  
Sonja Weise ◽  
Sebastian Meinicke ◽  
Thomas Wetzel ◽  
Benjamin Dietrich

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2850 ◽  
Author(s):  
Daigang Wang ◽  
Jingjing Sun ◽  
Yong Li ◽  
Hui Peng

The staged fracturing horizontal well has proven to be an attractive alternative for improving the development effect of a low permeability waterflood reservoir. Due to the coexistence of matrix, fracture, and horizontal wellbore, it remains a great challenge to accurately simulate the nonlinear flow behaviors in fractured porous media. Using a discrete fracture model to reduce the dimension of the fracture network, a two-parameter model is used to describe the nonlinear two-phase flow behavior, and the equivalent pipe flow equation is selected to estimate the horizontal wellbore pressure drop in the fractured low-permeability reservoir. A hybrid mathematical model for the nonlinear two-phase flow, including the effect of horizontal wellbore pressure drop in fractured porous media, is developed. A numerical scheme of the hybrid model is derived using the mimetic finite difference method and finite volume method. With a staggered five-spot flood system, the accuracy of the proposed model and the effect of fracture properties on nonlinear two-phase flow behaviors are further investigated. The results also show that with an increase of fracture length near injectors, the breakthrough time of injected water into the horizontal wellbore will be shorter, indicating a faster rise of the water cut, and a worse development effect. The impact of shortening fracture spacing is consistent with that of enlarging fracture length. Successful practice in modeling the complex waterflood behaviors for a 3-D heterogeneous reservoir provides powerful evidence for the practicability and reliability of our model.


Author(s):  
M. R. Myers ◽  
H. M. Cave ◽  
S. P. Krumdieck

Two-phase intermittent gas and liquid slug flow in small diameter glass and plastic tubes was studied. Two distinct flow regimes and the transition phenomena were identified. A modified Hagen-Poiseuille relation was derived to describe the extremely high pressure drop due to the surface tension effects of pinned slug flow.


1979 ◽  
Vol 19 (01) ◽  
pp. 15-28 ◽  
Author(s):  
P.M. Sigmund ◽  
F.G. McCaffery

Abstract With typical heterogeneous carbonate coresamples, large uncertainties of unknown magnitudecan occur in the relative permeabilities derived using different methods. This situation can beimproved by analyzing the recovery and pressureresponse to two-phase laboratory displacement tests by a nonlinear least-squares procedure. Thesuggested technique fits the finite-differencesolution of the Buckley-Leverett two-phase flowequations(which include capillary pressure) to theobserved recovery and pressure data. The procedureis used to determine relative-permeability curves characterized by two parameters and their standarderrors for heterogeneous cores from two Albertacarbonate reservoirs. Introduction Several recent investigations have recognizedpossible problems when obtaining reliable two-phasedisplacement data from heterogeneous carbonate core samples. Huppler stated that waterfloodresults on cores with significant heterogeneitiescan be sensitive to flooding rate, core length, andwettability, and that these effects should beconsidered before applying the laboratory results atfield flooding rates. Brandner and Slotboomsuggested that realistic displacement results maynot be obtainable when vertically flooding aheterogeneous core with a nonwetting phase becauseof the fluid's inability to maintain a properdistribution when the sample length is less than the height of capillary rise. Ehrlich noted thatstandard relative-permeability measurement methodsusing core plugs cannot be applied when the media are heterogeneous. Archer and Wong reported that application of theconventional Johnson- Bossler - Neumann (JBN)methods for determining relative permeabilities froma waterflood test could give erroneous results forheterogeneous carbonate as well as for relativelyhomogeneous porous media having a mixed wettability (see Refs. 1, 6, and 7). The observedstepwise or humped shape of water relativepermeability curves mainly were attributed to theeffect of water breakthrough ahead of the main floodfront entering into the JBN calculation. Archer andWong suggested that such abnormally shapedrelative-permeability curves do not represent theproperties of the bulk of the core sample, and proposed the use of a reservoir simulator forinterpreting laboratory waterflood data. The work referred to above provides the majorbackground for this study involving the developmentof an improved unsteady-state test method tocharacterize the relative-permeability properties ofheterogeneous carbonate core samples. The methodcan be applied to all porous media, regardless ofthe size and distribution of the heterogeneities.However, the presence of large-scaleheterogeneities, especially in the form of vugs, fractures, and stratification, could cause the derivedrelative-permeability relations to be affected by viscosityratio and displacement rate. Remember also that extrapolation of any core test data to a field scaleis associated with many uncertainties, particularlyfor heterogeneous formations. The inclusion ofcapillary pressure effects permits the interpretationof displacement tests at reservoir rates. The proposed calculation procedure extends theapproach suggested by Archer and Wong in thatthe degree of fit between observed laboratory dataand simulator results is quantified. We suggest thatrelative-permeability curves for a variety of rocktypes can be expressed in terms of two adjustable parameters and their standard error estimates.To illustrate the method, the results of displacementtests performed on cores from Swan Hills Beaverhill Lake limestone oil reservoir and Rainbow F KegRiver dolomite oil reservoir are interpreted. SPEJ P. 15^


1984 ◽  
Vol 24 (06) ◽  
pp. 697-706 ◽  
Author(s):  
A.T. Watson ◽  
G.R. Gavalas ◽  
J.H. Seinfeld

Abstract Since the number of parameters to be estimated in a reservoir history match is potentially quite large, it is important to determine which parameters can be estimated with reasonable accuracy from the available data. This aspect can be called determining the identifiability of the parameters. The identifiability of porosity and absolute parameters. The identifiability of porosity and absolute and relative permeabilities on the basis of flow and pressure data in a two-phase (oil/water) reservoir is pressure data in a two-phase (oil/water) reservoir is considered. The question posed is: How accurately can one expect to estimate spatially variable porosity and absolute permeability and relative permeabilities given typical permeability and relative permeabilities given typical production and pressure data" To gain insight into this production and pressure data" To gain insight into this question, analytical solutions for pressure and saturation in a one-dimensional (1D) waterflood are used. The following, conclusions are obtained.Only the average value of the porosity can be determined on the basis of water/oil flow measurements.The permeability distribution can be determined from pressure drop data with an accuracy depending on the pressure drop data with an accuracy depending on the mobility ratio.Exponents in a power function representation of the relative permeabilities can he determined from WOR data alone but not nearly so accurately as when pressure drop and flow data are used simultaneously. Introduction The utility of reservoir simulation in predicting reservoir behavior is limited by the accuracy with which reservoir properties can be estimated. Because of the high costs properties can be estimated. Because of the high costs associated with coring analysis, reservoir engineers must rely, on history matching as a means of estimating reservoir properties. In this process a history match is carried out by choosing the reservoir properties as those that result in simulated well pressure and flow data that match as closely as possible those measured during production. In general, reservoir properties at each gridblock in the simulator represent the unknown values to be determined. Although there are efficient methods for estimating such a large number of unknowns, it has long been recognized from the results of single phase history matching exercises that many different sets of parameter values may yield a nearly identical match of observed and predicted pressures. The conventional single phase predicted pressures. The conventional single phase history matching problem is in fact a mathematically illposed problem, which explains its nonunique behavior. Such a situation is, in short, the result of the large number of unknowns to be estimated on the basis of the available data and the lack of sensitivity of the simulator solutions to the parameters. Because of this lack of sensitivity, the need to reduce the number of unknown Parameters or to introduce some additional constraints, such as "smoothness" of the estimated parameters, has been recognized. A problem as important as that of choosing which minimization method to employ in history matching is that of choosing, on the basis of the available well data. which properties actually should be estimated. This selection properties actually should be estimated. This selection depends on the relationship of the unknown parameters to the simulated well data. Ideally one would want to knowwhich parameters can be determined uniquely if the measurements were exact, andgiven the expected level of error in the measurements, how accurately we can expect to be able to estimate the parameters. The first question, that of establishing uniqueness of the estimated parameters, is notoriously difficult to answer, and for a parameters, is notoriously difficult to answer, and for a problem as complicated as reservoir history matching, problem as complicated as reservoir history matching, there are virtually no general results available that allow one to establish uniqueness for permeability or porosity. Thus, it is not possible in general to base our choice of which parameters to estimate on rigorous mathematical uniqueness results. In lieu of an answer to Question 1, the selection of parameters to be estimated can be based on Question 2, parameters to be estimated can be based on Question 2, which is amenable to theoretical analysis. If the expected errors in estimation of any of the parameters, or any linear combination of the parameters, are extremely large, then that parameter or set of parameters can be judged as not identifiable. In such a case, steps may be taken to reduce the number of unknown parameters. In summary, the reservoir history matching problem is a difficult parameter estimation problem, and understanding the relationship between the unknown parameters and the measured data is essential to obtaining meaningful estimates of the reservoir properties. Quantitative studies regarding the accuracy of estimates for single-phase history matching problems have been reported by Shah et al. and Dogru et al. Shah et al,. investigated the optimal level of zonation for use with 1D single-phase (oil) situations. SPEJ P. 697


Sign in / Sign up

Export Citation Format

Share Document