EVIDENCE FOR MULTISCALING IN LARGE DLA CLUSTERS

Fractals ◽  
1993 ◽  
Vol 01 (04) ◽  
pp. 840-845 ◽  
Author(s):  
C. AMITRANO ◽  
A. CONIGLIO ◽  
P. MEAKIN ◽  
M. ZANNETTI

We have measured the multiscaling dimension D(x) on a set of large off-lattice DLA clusters of one million particles, finding results which strongly support multiscaling behavior. The multiscaling picture is also confirmed by the slow logarithmic decay in the fluctuations of the radius (relative to the cluster radius) as the size of clusters grow.

2021 ◽  
Vol 87 (3) ◽  
Author(s):  
R. Nemati Siahmazgi ◽  
S. Jafari

The purpose of the present paper is to investigate the generation of soft X-ray emission from an anharmonic collisional nanoplasma by a laser–nanocluster interaction. The electric field of the laser beam interacts with the nanocluster and leads to ionization of the cluster atoms, which then produces a nanoplasma. Because of the nonlinear restoring force in an anharmonic nanoplasma, the fluctuations and heating rate of, as well as the power radiated by, the electrons in the nanocluster plasma will be notably different from those arising from a linear restoring force. By comparing the nonlinear restoring force state (which arises from an anharmonic cluster) with that of the linear restoring force (in harmonic clusters), the cluster temperature specifically changes at the resonant frequency relative to the linear restoring force, while the variation of the anharmonic cluster radius is almost identical to that of the harmonic cluster radius. In addition, it is revealed that a sharp peak of X-ray emission arises after some picoseconds in deuterium, helium, neon and argon clusters.


1971 ◽  
Vol 38 (1) ◽  
pp. 190-196 ◽  
Author(s):  
E. Y. Harper

The scattering of a plane acoustic shock wave by a cylindrical cavity in an inviscid fluid medium is calculated numerically and compared with a recently obtained asymptotic expansion. In contrast to the scattering by a rigid cylinder, the cavity displays a distinctive shielding effect in the shadow region characterized by a peak exitation and an inverse logarithmic decay. Experimental results are presented which indicate a strong counterpart in plastic shock diffraction.


2008 ◽  
Vol 603 ◽  
pp. 63-100 ◽  
Author(s):  
G. SUBRAMANIAN ◽  
DONALD L. KOCH

A theoretical framework is developed to describe, in the limit of small but finite Re, the evolution of dilute clusters of sedimenting particles. Here, Re =aU/ν is the particle Reynolds number, where a is the radius of the spherical particle, U its settling velocity, and ν the kinematic viscosity of the suspending fluid. The theory assumes the disturbance velocity field at sufficiently large distances from a sedimenting particle, even at small Re, to possess the familiar source--sink character; that is, the momentum defect brought in via a narrow wake behind the particle is convected radially outwards in the remaining directions. It is then argued that for spherical clusters with sufficiently many particles, specifically with N much greater than O(R0U/ν), the initial evolution is strongly influenced by wake-mediated interactions; here, N is the total number of particles, and R0 is the initial cluster radius. As a result, the cluster first evolves into a nearly planar configuration with an asymptotically small aspect ratio of O(R0U/N ν), the plane of the cluster being perpendicular to the direction of gravity; subsequent expansion occurs with an unchanged aspect ratio. For relatively sparse clusters with N smaller than O(R0U/ν), the probability of wake interactions remains negligible, and the cluster expands while retaining its spherical shape. The long-time expansion in the former case, and that for all times in the latter case, is driven by disturbance velocity fields produced by the particles outside their wakes. The resulting interactions between particles are therefore mutually repulsive with forces that obey an inverse-square law. The analysis presented describes cluster evolution in this regime. A continuum representation is adopted with the clusters being characterized by a number density field (n(r, t)), and a corresponding induced velocity field (u (r, t)) arising on account of interactions. For both planar axisymmetric clusters and spherical clusters with radial symmetry, the evolution equation admits a similarity solution; either cluster expands self-similarly for long times. The number density profiles at different times are functions of a similarity variable η = (r/t1/3), r being the radial distance away from the cluster centre, and t the time. The radius of the expanding cluster is found to be of the form Rcl (t) = A (ν a)1/3N1/3t1/3, where the constant of proportionality, A, is determined from an analytical solution of the evolution equation; one finds A = 1.743 and 1.651 for planar and spherical clusters, respectively. The number density profile in a planar axisymmetric cluster is also obtained numerically as a solution of the initial value problem for a canonical (Gaussian) initial condition. The numerical results compare well with theoretical predictions, and demonstrate the asymptotic stability of the similarity solution in two dimensions for long times, at least for axisymmetric initial conditions.


2010 ◽  
pp. 109-126
Author(s):  
Felipe Cucker ◽  
Ding Xuan Zhou

2020 ◽  
Vol 101 (2) ◽  
Author(s):  
Hiroyuki Kitamoto ◽  
Yoshihisa Kitazawa ◽  
Takahiko Matsubara

2004 ◽  
Vol 191 ◽  
pp. 104-108
Author(s):  
R. Köhler

AbstractWe report on the results of a binary survey in the outer parts of the Orion Nebula Cluster, 0.7 to 2 pc from the cluster center. The results should help to decide if the binary formation rate was lower in Orion than in Taurus-Auriga, or if many binaries formed initially, but were destroyed in close stellar encounters. We find that the binary frequency of low-mass stars does not depend on the distance to the cluster center. The companion star frequency of intermediate- to high-mass stars shows a trend to decrease with cluster radius, but the statistical significance of this trend is rather weak.


2020 ◽  
Vol 495 (3) ◽  
pp. 3002-3013 ◽  
Author(s):  
Alexander Knebe ◽  
Matías Gámez-Marín ◽  
Frazer R Pearce ◽  
Weiguang Cui ◽  
Kai Hoffmann ◽  
...  

ABSTRACT Using 324 numerically modelled galaxy clusters, we investigate the radial and galaxy–halo alignment of dark matter subhaloes and satellite galaxies orbiting within and around them. We find that radial alignment depends on distance to the centre of the galaxy cluster but appears independent of the dynamical state of the central host cluster. Furthermore, we cannot find a relation between radial alignment of the halo or galaxy shape with its own mass. We report that backsplash galaxies, i.e. objects that have already passed through the cluster radius but are now located in the outskirts, show a stronger radial alignment than infalling objects. We further find that there exists a population of well radially aligned objects passing very close to the central cluster’s centre that were found to be on highly radial orbit.


1999 ◽  
Vol 60 (2) ◽  
pp. 2430-2430 ◽  
Author(s):  
L. Fabbian ◽  
W. Götze ◽  
F. Sciortino ◽  
P. Tartaglia ◽  
F. Thiery

Sign in / Sign up

Export Citation Format

Share Document