FRACTAL IMAGES OF GENERALIZED JULIA SETS
Keyword(s):
The Real
◽
The iteration function [Formula: see text], where both α and β are positive real numbers, is used to generate families of the generalized Julia sets, [Formula: see text]. The calculations are restricted to the principal value of zα + iβ and the obtained results demonstrate that classical Julia sets, [Formula: see text] are significantly deformed when non-zero values of β are considered. As a result of this deformation, the area of stable regions in the complex plane changes and a process of splitting and shifting takes place along the real axis. It is shown that this process is responsible for the formation of new fractal images of generalized Julia sets.
Keyword(s):
Keyword(s):