COMPUTATION OF ACOUSTIC FIELD RADIATED BY A SPHERICAL SOURCE NEAR A THERMOVISCOUS FLUID SPHERE

2007 ◽  
Vol 15 (02) ◽  
pp. 159-180
Author(s):  
S. M. HASHEMINEJAD ◽  
A. H. PASDAR

Acoustic radiation from a spherical source, vibrating with an arbitrary, axisymmetric, time-harmonic surface velocity distribution, while immersed near a thermoviscous fluid sphere suspended in an unbounded viscous thermally conducting fluid medium is computed. The formulation utilizes the appropriate wave field expansions and boundary conditions along with the translational addition theorem for spherical wave functions to develop a closed-form solution in form of infinite series. The prime objective is to investigate the thermoviscous loss effects on acoustic radiation and its associated field quantities. The analytical results are illustrated with a numerical example in which the spherical source, that may vibrate either in a monopole-like or a dipole-like mode, is suspended in a thermoviscous fluid medium near an equal-sized viscous thermally conducting fluid sphere. To avoid numerical difficulties normally arising in process of solving thermoviscous radiation/scattering problems in the frequency range of interest, a basic multiple precision FORTRAN computation package was utilized in developing specialized codes for computing special mathematical functions including spherical Bessel functions of complex argument and performing large complex matrix manipulations on floating point numbers of arbitrarily high precision. The essential acoustic field quantities such as the modal acoustic radiation impedance load on the source, the radiated far-field pressure directivity pattern and the radiated on-axis pressure are evaluated and discussed for representative values of the parameters characterizing the system. Limiting cases are examined and excellent agreements with well known solutions are attained.

2004 ◽  
Vol 11 (5-6) ◽  
pp. 625-635 ◽  
Author(s):  
Seyyed M. Hasheminejad ◽  
Mahdi Azarpeyvand

Radiation of sound from a spherical source, vibrating with an arbitrary, axisymmetric, time-harmonic surface velocity, while positioned within an acoustic quarterspace is analyzed in an exact manner. The formulation utilizes the appropriate wave field expansions along with the translational addition theorem for spherical wave functions in combination with the classical method of images to develop a closed-form solution in form of infinite series. The analytical results are illustrated with numerical examples in which the spherical source, vibrating in the pulsating (n= 0) and translational oscillating (n= 1) modes, is positioned near the rigid boundary of a water-filled quarterspace. Subsequently, the basic acoustic field quantities such as the modal acoustic radiation impedance load and the radiation intensity distribution are evaluated for representative values of the parameters characterizing the system.


2011 ◽  
Vol 2-3 ◽  
pp. 733-738
Author(s):  
Sheng Yao Gao ◽  
De Shi Wang ◽  
Yi Qun Du

To overcome the non-uniqueness of solution at eigenfrequencies in the boundary integral equation method for structural acoustic radiation, wave superposition method is introduced to study the acoustics characteristics including acoustic field reconstruction and sound power calculation. The numerical method is implemented by using the acoustic field from a series of virtual sources which are collocated near the boundary surface to replace the acoustic field of the radiator, namely the principle of equivalent. How to collocate these equivalent sources is not indicated definitely. Once wave superposition method is applied to sound power calculation, it is necessary to evaluate its accuracy and impact factors. In the paper, the basic principle of wave superposition method is described, and then the integral equation is discretized. Also, the impact factors including element numbers, frequency limitation, and distance between virtual source and integral surface are analyzed in the process of calculate the acoustic radiation from the simply supported thin plate under concentrated force. The extensive measures of acoustic field at the thin plate are compared with results obtain using different numerical methods. The results show that: (a) The agreement between the results from the above numerical methods is excellent. The wave superposition method requires fewer elements and hence is faster. But the extensive numerical modeling suggests that as long as the volume velocity matching yields more than adequate accuracy. (b) The equivalent sources should be collocated inside the radiator. And the accuracy of a given Gauss integration formula will decrease as the source approaches the boundary surface. (c) The numerical method is applicable to the acoustic radiation of structure with complicated shape. (d) The method described in this paper can be used to perform effectively sound power calculation, and its application range can be extended on the basis of these conclusions.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (17) ◽  
pp. 3394-3400 ◽  
Author(s):  
Sameer Deshmukh ◽  
Zbigniew Brzozka ◽  
Thomas Laurell ◽  
Per Augustsson

Flow laminated liquids can relocate in a resonant acoustic field due to differences in density and speed of sound.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qingtao Gong ◽  
Zhanyang Chen ◽  
Hongbin Gui ◽  
Dong Yu

The underwater acoustic radiation of the submarine power cabin has recently become a hot topic in the industry and also in the academia. In this article, the vibration and underwater acoustic radiation of a ring-stiffened conical shell with bases are investigated numerically by means of the combination of the finite element method and boundary element method. The acoustic radiation field is obtained by the traditional acoustic field model and ISO acoustic field model, respectively. A series of numerical examples are given, and the results are compared. Besides, the sound pressure at different positions with frequency is further studied. It is shown that the sound radiated by the structure mainly propagates to the side directions of the shell and propagates relatively less to the front side and the rear side.


2019 ◽  
Vol 105 (6) ◽  
pp. 1137-1148
Author(s):  
Nicolas Joly ◽  
Petr Honzík

To model linear acoustics in a thermoviscous fluid in open domain and time-harmonic regime, a Finite Element formulation in a bounded meshed domain is combined with the integral representation of the field for the propagative solution. The integrals are non-singular and involve the only Finite Element node values for temperature variation and particle velocity variables. To overcome the non-uniqueness of solutions at fictitious resonant frequencies, a Burton-Miller combination of integral representation is used. This formulation is suitable to compute acoustic radiation, scattering and diffraction by objects or mutual interaction between transducers. Two-dimensional computational experiments are presented in an infinite, open domain (exterior), showing that the model can be achieved in meshing only a thin domain surrounding the physical boundaries of a device.


2014 ◽  
Vol 599-601 ◽  
pp. 922-926
Author(s):  
Guo Liang Xu ◽  
Qi Wei He ◽  
Shao Chun Ding ◽  
Hai Bo Wan

To analyze effects of quay environment on the AUV radiated acoustic field test, the PNAH (PNAH: planar near-field acoustical holography) was used to simulate acoustic field. By simulating the free and non-free acoustic field and comparing amplitudes and angles of complex sound pressure, Analyze effects of quay wall and seabed reflection on the AUV radiated acoustic field test to determine the standard of quay wall and seabed environment which meets testing. The work would provide a certain reference for the AUV radiated acoustic field test.


Sign in / Sign up

Export Citation Format

Share Document