ION SCATTERING AND RECOILING SPECTROSCOPY FOR REAL TIME MONITORING OF SURFACE PROCESSES IN A GAS PHASE ATMOSPHERE

2000 ◽  
Vol 07 (05n06) ◽  
pp. 657-659
Author(s):  
T. FUJINO ◽  
M. KATAYAMA ◽  
Y. YAMAZAKI ◽  
S. INOUE ◽  
J.-T. RYU ◽  
...  

Various surface processes, such as thin film growth or etching, are usually performed by introducing various gases into a vacuum chamber. In order to monitor such surface processes in situ, we have developed an ion scattering and recoiling spectroscopy apparatus equipped with a differential pumping system. The system was applied for real time monitoring of hydrogen-mediated growth of Ge films on Si substrates under a hydrogen gas pressure of 10-4 Torr.

1997 ◽  
Vol 472 ◽  
Author(s):  
G. Soto ◽  
E. C. Samano ◽  
R. Machorro ◽  
M. Avalos ◽  
L. Cota

ABSTRACTReal-time ellipsometry has shown to be a powerful tool to analyze thin films during processing. It is non-disturbing and its sensitivity lies in the submonolayer range. In fact, a slight variation in the film microstructure might result in a significant change of the polarization state of the reflected beam from the sample surface. SiNx layers have been grown on glass, quartz, KC1 and Si substrates by laser ablating a Si3N4 sintered target in vacuum and N2 environment. The film growth was monitored by real time ellipsometry at a fixed wavelength, and a fixed incidence angle. Once the deposition process is completed, the refractive index was obtained by perfoming in situ spectroellipsometric measurements in the 1.5 to 5 eV photon-energy range. The best curve fitting of the experimental data is used to find the film composition: a mixture of Si3N4, polycrystalline Si, and amorphous Si. The films composition and micro structure inferred from ellipsometric data are compared to those obtained by in-situ surface techniques and TEM, respectively.


1999 ◽  
Vol 569 ◽  
Author(s):  
V.S. Smentkowskiv ◽  
A. R. Krauss ◽  
O. Auciello ◽  
J. Im ◽  
D.M. Gruen ◽  
...  

ABSTRACTTime-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1–2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is a variant of DRS capable of isotopic resolution for all surface species - including H and He. The advantages and limitations of each of these techniques will be discussed.The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dual functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.


1995 ◽  
Vol 410 ◽  
Author(s):  
E. Bertran ◽  
A. Canillas ◽  
J. Campmany ◽  
M. El Kasmi ◽  
E. Pascual ◽  
...  

ABSTRACTWe present an in situ study of the growth of boron nitride thin films by real time ellipsometry. Films were produced in a PECVD reactor by rf glow discharge decomposition of ammonia (pure) and diborane (1% in hydrogen), on Ni-Cr coated c-Si substrates placed either on the powered electrode or on the grounded electrode of the reactor. A fast phase-modulated ellipsometer performed the real time monitoring of the growth processes at 350 nm. The ellipsometric angle trayectories were obtained through an autocalibrated method, especially suitable for the in situ optical analysis of transparent thin films. We applied several thin film growth optical models (homogeneous, two-layer, surface roughness) to analyze parameters of the films such as refractive index, extinction coefficient, roughness and deposition rate. In all the cases studied, the two-layer model fits well with the ellipsometric measurements, but a more sofisticated model considering a variable refractive index could better describe these films.


1999 ◽  
Vol 569 ◽  
Author(s):  
A.H. Mueller ◽  
Y. Gao ◽  
E.A. Irene ◽  
O. Auciello ◽  
A.R. Krauss ◽  
...  

ABSTRACTIn-situ real time characterization of chemically and structurally complex thin films is becoming important as complex materials are finding more applications in electronic devices. To this end, a unique thin film growth and deposition system was constructed combining a multi-target sputter deposition system with spectroscopic ellipsometry and time-of-flight ion scattering and recoil spectroscopy. This system is demonstrated with studies on YBa2Cu3O7−δand BaSrTiO3 films.


Sign in / Sign up

Export Citation Format

Share Document