Microstructural Identification of SiNx Films by Real-Time Ellipsometry

1997 ◽  
Vol 472 ◽  
Author(s):  
G. Soto ◽  
E. C. Samano ◽  
R. Machorro ◽  
M. Avalos ◽  
L. Cota

ABSTRACTReal-time ellipsometry has shown to be a powerful tool to analyze thin films during processing. It is non-disturbing and its sensitivity lies in the submonolayer range. In fact, a slight variation in the film microstructure might result in a significant change of the polarization state of the reflected beam from the sample surface. SiNx layers have been grown on glass, quartz, KC1 and Si substrates by laser ablating a Si3N4 sintered target in vacuum and N2 environment. The film growth was monitored by real time ellipsometry at a fixed wavelength, and a fixed incidence angle. Once the deposition process is completed, the refractive index was obtained by perfoming in situ spectroellipsometric measurements in the 1.5 to 5 eV photon-energy range. The best curve fitting of the experimental data is used to find the film composition: a mixture of Si3N4, polycrystalline Si, and amorphous Si. The films composition and micro structure inferred from ellipsometric data are compared to those obtained by in-situ surface techniques and TEM, respectively.

2000 ◽  
Vol 07 (05n06) ◽  
pp. 657-659
Author(s):  
T. FUJINO ◽  
M. KATAYAMA ◽  
Y. YAMAZAKI ◽  
S. INOUE ◽  
J.-T. RYU ◽  
...  

Various surface processes, such as thin film growth or etching, are usually performed by introducing various gases into a vacuum chamber. In order to monitor such surface processes in situ, we have developed an ion scattering and recoiling spectroscopy apparatus equipped with a differential pumping system. The system was applied for real time monitoring of hydrogen-mediated growth of Ge films on Si substrates under a hydrogen gas pressure of 10-4 Torr.


1995 ◽  
Vol 410 ◽  
Author(s):  
E. Bertran ◽  
A. Canillas ◽  
J. Campmany ◽  
M. El Kasmi ◽  
E. Pascual ◽  
...  

ABSTRACTWe present an in situ study of the growth of boron nitride thin films by real time ellipsometry. Films were produced in a PECVD reactor by rf glow discharge decomposition of ammonia (pure) and diborane (1% in hydrogen), on Ni-Cr coated c-Si substrates placed either on the powered electrode or on the grounded electrode of the reactor. A fast phase-modulated ellipsometer performed the real time monitoring of the growth processes at 350 nm. The ellipsometric angle trayectories were obtained through an autocalibrated method, especially suitable for the in situ optical analysis of transparent thin films. We applied several thin film growth optical models (homogeneous, two-layer, surface roughness) to analyze parameters of the films such as refractive index, extinction coefficient, roughness and deposition rate. In all the cases studied, the two-layer model fits well with the ellipsometric measurements, but a more sofisticated model considering a variable refractive index could better describe these films.


2008 ◽  
Vol 80 (11) ◽  
pp. 2439-2449 ◽  
Author(s):  
Vojtech Svoboda ◽  
Bor Yann Liaw

Using three synchronized, in situ, nonintrusive, real-time characterization techniques to conduct transient observations, we revealed mechanistic details of a polymer film growth. A thin methylene green (MG) polymer coating (of the order of 35 nm) was used as a model system in this electrochemical microgravimetric imaging ellipsometry (EmIE) investigation. The direct correlation of changes in mass (via quartz crystal microbalance, QCM), ellipsometric angles (via imaging ellipsometry) with electrochemical conditions (in cyclic voltammetry, CV) provides discrete temporal and spatial information to help us decipher the underlying steps, from which we were able to separate adsorption, reduction, oxidation, desorption, and polymerization regimes involved in the deposition process. The evidence revealed in this study could have broad impact on the general understanding regarding how a film is deposited onto a metal surface.


MRS Bulletin ◽  
1995 ◽  
Vol 20 (5) ◽  
pp. 14-17 ◽  
Author(s):  
Orlando Auciello ◽  
Alan R. Krauss

It is anticipated that a new generation of advanced electronic and optical devices will involve the synthesis of diverse materials in single or multielement thin-film form, or in layered heterostructures. These devices will most likely involve diverse materials such as high-temperature superconductors, ferroelectric, electrooptic, and optical materials; diamond; nitrides; semiconductors; insulators; and metals in the form of ultra-thin layers with sharp interfaces in which the layer thickness may reach atomic dimensions. Therefore, it becomes increasingly important to be able to monitor the deposition process in situ and in real time, particularly for complex multicomponent oxides or nitrides, in which the production of the desired phase is a highly sensitive function of the growth conditions, often requiring relatively high-pressure oxygen or nitrogen environments up to several hundred mTorr, and in some cases, several Torr. Consequently, the growth environment for many of these materials is incompatible with conventional surface-analytic methods, which are typically restricted to high-or ultrahigh-vacuum conditions. New deposition and analytical methods, or adaptation of those already established, will be required.Since thin-film growth occurs at the surface, the analytical methods should be highly surface-specific, although sub-surface diffusion and chemical processes also affect film properties. Sampling depth and ambient-gas compatibility are key factors which must be considered when choosing in situ probes of thin-film growth phenomena. In most cases, the sampling depth depends on the mean range of the exit species (ion, photon, or electron) in the sample.


2004 ◽  
Vol 808 ◽  
Author(s):  
J.P.M. Hoefnagels ◽  
E. Langereis ◽  
M.C.M. van de Sanden ◽  
W.M.M. Kessels

ABSTRACTA new ultrahigh vacuum setup is presented which is designed for studying the surface science aspects of a-Si:H film growth using various advanced optical diagnostic techniques. The setup is equipped with plasma and radical sources which produce well-defined radicals beams such that the a-Si:H deposition process can be mimicked. In this paper the initial experiments with respect to deposition of a-Si:H using a hot wire source and etching of a-Si:H by atomic hydrogen are presented. These processes are monitored by real time spectroscopic ellipsometry and the etch yield of Si by atomic hydrogen is quantified to be 0.005±0.002 Si atoms per incoming H atom.


1996 ◽  
Vol 420 ◽  
Author(s):  
Jürgen Knobloch ◽  
Peter Hess

AbstractHigh quality a-Si:H films were deposited by pulsed VUV (157nm) laser CVD, allowing digital control of the deposition process. Nucleation and growth on native oxide-covered Si (100) and on H-terminated Si (111) surfaces were studied in situ by FTIR transmission spectroscopy with sub-monolayer sensitivity. The film thickness was monitored simultaneously using a quartz crystal microbalance (QCM) with comparable resolution. The in situ spectra reveal that the nature of the substrate surface significantly influences the hydrogen bonding configuration in the interface region. In both cases the assumed cluster growth during the initial stage is characterized by a band around 2100cm−1, which is assigned to SiHX (x = 1 – 3) surface modes. This band broadens until the clusters coalesce and band saturation occurs. At this time a second band starts to grow at 2000cm−1, which is attributed to bulk SiH bonds. Difference spectra calculated for layers at different depths with definite thickness and the deconvolution of the broad feature observed during the very first stage of film growth indicate the existence of a hydrogen-rich layer at the substrate surface whose composition and thickness depend on the properties of the substrate surface.


Sign in / Sign up

Export Citation Format

Share Document