REFRACTIVE INDEX PROFILE RECONSTRUCTION OF PLANAR WAVEGUIDE FROM ITS MODE INTENSITY USING CHARACTERISTIC MATRIX METHOD

2001 ◽  
Vol 10 (02) ◽  
pp. 169-179
Author(s):  
HENRI P. URANUS ◽  
M. O. TJIA

A method is proposed for the reconstruction of refractive index profile of planar waveguide from its fundamental mode intensity profile. The reconstruction is performed by fitting the calculated intensity distribution iteratively with the measured intensity distribution employing nonlinear least-squares regression technique. At each stage of iteration, new trial parameter values are generated and used to form a waveguide model approximated by a multilayer structure with stepwise index distribution, upon which the intensity distribution is then calculated by using the characteristic matrix technique. This method was numerically examined by using samples of either known or unknown analytic expression of the index profile.

2000 ◽  
Vol 39 (Part 1, No. 3B) ◽  
pp. 1463-1467 ◽  
Author(s):  
Carlos Gomez-Reino ◽  
María Victoria Perez ◽  
Carmen Bao ◽  
María Teresa Flores-Arias ◽  
Silvia Vidal ◽  
...  

2001 ◽  
Vol 16 (4) ◽  
pp. 1135-1137 ◽  
Author(s):  
Zhuang Zhuo ◽  
Edwin Yue Bun Pun ◽  
Sun Fat Wong ◽  
Ying Zhou

Planar waveguide was fabricated in Er:Yb:phosphate glass by a single energy implantation of 2.5 MeV He+ at a dose of 1.6 × 1016 ions/cm2. The waveguide was characterized by prism coupling method, and the refractive index profile was reconstructed using the inverse Wentzel-Kramers-Brillouin method. The photoluminescence was also measured. The energy loss was simulated, and the results were compared and discussed with respect to the refractive index profile in the waveguide.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1282
Author(s):  
Victor Reshetnyak ◽  
Igor Pinkevych ◽  
Timothy Bunning ◽  
Dean Evans

This study theoretically investigated light reflection and transmission in a system composed of a thin metal layer (Ag) adjacent to a rugate filter (RF) having a harmonic refractive index profile. Narrow dips in reflectance and peaks in transmittance in the RF band gap were obtained due to the excitation of a Tamm plasmon polariton (TPP) at the Ag–RF interface. It is shown that the spectral position and magnitude of the TPP dips/peaks in the RF band gap depend on the harmonic profile parameters of the RF refractive index, the metal layer thickness, and the external medium refractive index. The obtained dependences for reflectance and transmittance allow selecting parameters of the system which can be optimized for various applications.


Sign in / Sign up

Export Citation Format

Share Document