GAP SOLITONS AND SLOW LIGHT

2002 ◽  
Vol 11 (03) ◽  
pp. 239-259 ◽  
Author(s):  
CLAUDIO CONTI ◽  
GAETANO ASSANTO ◽  
STEFANO TRILLO

Optical nonlinearity and feedback through Bragg periodicity are the basic ingredients for light localization into gap solitons. We review the basic concepts and model equations for gap solitons in Kerr and quadratic nonlinear media encompassing a one-dimensional Bragg resonance. With specific regard to frequency doubling media, we generalize the concept of a photonic crystal to band-gaps of a nonlinear origin, and finally address the slow character of quadratic gap-solitons with reference to their excitation.

1993 ◽  
Vol 47 (10) ◽  
pp. 5748-5755 ◽  
Author(s):  
J. M. Bilbault ◽  
C. Tatuam Kamga ◽  
M. Remoissenet
Keyword(s):  

2010 ◽  
Vol 663-665 ◽  
pp. 725-728 ◽  
Author(s):  
Yuan Ming Huang ◽  
Qing Lan Ma ◽  
Bao Gai Zhai ◽  
Yun Gao Cai

Considered the model of the one-dimensional photonic crystals (1-D PCs) with double defects, the refractive indexes (n2’, n3’ and n2’’, n3’’) of the double defects were 2.0, 4.0 and 4.0, 2.0 respectively. With parameter n2=1.5, n3=2.5, by theoretical calculations with characteristic matrix method, the results shown that for a certain number (14 was taken) of layers of the 1-D PCs, when the double defects abutted, there was a defect band gap in the stop band gap, while when the double defects separated, there occurred two defect band gaps in the stop band gap; besides, with the separation of the two defects, the transmittance of the double defect band gaps decreased gradually. In addition, in this progress, the frequency range of the stop band gap has a little increase from 0.092 to 0.095.


2011 ◽  
Vol 36 (20) ◽  
pp. 3990 ◽  
Author(s):  
Craig M. Johnson ◽  
Peter J. Reece ◽  
Gavin J. Conibeer

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Luis Torrijos-Morán ◽  
Amadeu Griol ◽  
Jaime García-Rupérez

AbstractStrongly influenced by the advances in the semiconductor industry, the miniaturization and integration of optical circuits into smaller devices has stimulated considerable research efforts in recent decades. Among other structures, integrated interferometers play a prominent role in the development of photonic devices for on-chip applications ranging from optical communication networks to point-of-care analysis instruments. However, it has been a long-standing challenge to design extremely short interferometer schemes, as long interaction lengths are typically required for a complete modulation transition. Several approaches, including novel materials or sophisticated configurations, have been proposed to overcome some of these size limitations but at the expense of increasing fabrication complexity and cost. Here, we demonstrate for the first time slow light bimodal interferometric behaviour in an integrated single-channel one-dimensional photonic crystal. The proposed structure supports two electromagnetic modes of the same polarization that exhibit a large group velocity difference. Specifically, an over 20-fold reduction in the higher-order-mode group velocity is experimentally shown on a straightforward all-dielectric bimodal structure, leading to a remarkable optical path reduction compared to other conventional interferometers. Moreover, we experimentally demonstrate the significant performance improvement provided by the proposed bimodal photonic crystal interferometer in the creation of an ultra-compact optical modulator and a highly sensitive photonic sensor.


Sign in / Sign up

Export Citation Format

Share Document