Generalized Bernoulli Wick differential equation

Author(s):  
Sami H. Altoum ◽  
Aymen Ettaieb ◽  
Hafedh Rguigui

Based on the distributions space on [Formula: see text] (denoted by [Formula: see text]) which is the topological dual space of the space of entire functions with exponential growth of order [Formula: see text] and of minimal type, we introduce a new type of differential equations using the Wick derivation operator and the Wick product of elements in [Formula: see text]. These equations are called generalized Bernoulli Wick differential equations which are the analogue of the classical Bernoulli differential equations. We solve these generalized Wick differential equations. The present method is exemplified by several examples.

2013 ◽  
Vol 21 (2) ◽  
pp. 35-52
Author(s):  
Benharrat Belaïdi ◽  
Habib Habib

Abstract In this paper, we investigate the order and the hyper-order of growth of solutions of the linear differential equation where n≥2 is an integer, Aj (z) (≢0) (j = 1,2) are entire functions with max {σ A(j) : (j = 1,2} < 1, Q (z) = qmzm + ... + q1z + q0 is a nonoonstant polynomial and a1, a2 are complex numbers. Under some conditions, we prove that every solution f (z) ≢ 0 of the above equation is of infinite order and hyper-order 1.


2021 ◽  
Vol 18 (1) ◽  
pp. 1-11
Author(s):  
Andriy Bandura

We present a generalization of concept of bounded $l$-index for meromorphic functions of finite order. Using known results for entire functions of bounded $l$-index we obtain similar propositions for meromorphic functions. There are presented analogs of Hayman's theorem and logarithmic criterion for this class. The propositions are widely used to investigate $l$-index boundedness of entire solutions of differential equations. Taking this into account we raise a general problem of generalization of some results from theory of entire functions of bounded $l$-index by meromorphic functions of finite order and their applications to meromorphic solutions of differential equations. There are deduced sufficient conditions providing $l$-index boundedness of meromoprhic solutions of finite order for the Riccati differential equation. Also we proved that the Weierstrass $\wp$-function has bounded $l$-index with $l(z)=|z|.$


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Zhigang Huang

This paper is devoted to studying the growth of solutions of second-order nonhomogeneous linear differential equation with meromorphic coefficients. We also discuss the relationship between small functions and differential polynomialsL(f)=d2f″+d1f′+d0fgenerated by solutions of the above equation, whered0(z),d1(z),andd2(z)are entire functions that are not all equal to zero.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 771
Author(s):  
Andrei Ludu

A new type of ordinary differential equation is introduced and discussed: time-dependent order ordinary differential equations. These equations are solved via fractional calculus by transforming them into Volterra integral equations of second kind with singular integrable kernel. The solutions of the time-dependent order differential equation represent deformations of the solutions of the classical (integer order) differential equations, mapping them into one-another as limiting cases. This equation can also move, remove or generate singularities without involving variable coefficients. An interesting symmetry of the solution in relation to the Riemann zeta function and Harmonic numbers is observed.


1870 ◽  
Vol 18 (114-122) ◽  
pp. 210-212

The principles laid down in my former paper will enable us to integrate a proposed differential equation, when the solution can be expressed in the form—P/Q, where P, Q, to are rational and entire functions of ( x ). Let (α 0 +α 1 x +α 2 x 2 + ... +α m x m ) d n y / dx n + (β 0 +β 1 +β 2 x 2 + ... +α m x m ) d n-1 y / dx n-1 + (γ 0 +γ 1 x +γ 2 x 2 + ... +γ m x m ) d n-2 y / dx n-2 +.... +(λ 0 +λ 1 +λ 2 x 2 + ... +λ m x m ) y =0 be the general linear differential equation of the nth order, where none of the indices of ( x ) in the coefficients of the succeeding terms are greater than those in the coefficients of the two first.


Lane-Emden equation is also of fundamental importance in mathematical physics, celestial mechanics,and computer science. It can be used to describe stellar structures, equilibrium density distribution in polytrophicisothermal gas, thermal behavior in mutual attraction of its molecules. An improved numerical method is developed for solving Lane-Emden type differential equations. The method is based on power series solutions of differential equations and Maclaurin series expansion. A python program is written to carry out numerical calculations. Five examples are solved and shown in this paper, the solutions obtained by the program are compared with the exact solutions of differential equation, an excellent agreement is found between them. The present method improves runtime.


2019 ◽  
Vol 69 (5) ◽  
pp. 1089-1098 ◽  
Author(s):  
Andriy Bandura ◽  
Oleh Skaskiv

Abstract We study sufficient conditions of boundedness of L-index in a direction b ∈ ℂn ∖ {0} for analytic solutions in the unit ball of a linear higher order non-homogeneous differential equation with directional derivatives. These conditions are restrictions by the analytic coefficients in the unit ball of the equation. Also we investigate asymptotic behavior of analytic functions of bounded L-index in the direction and estimate its growth. The results are generalizations of known propositions for entire functions of several variables.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Zinelaâbidine Latreuch ◽  
Benharrat Belaïdi

We study the growth and oscillation of gf=d1f1+d2f2, where d1 and d2 are entire functions of finite order not all vanishing identically and f1 and f2 are two linearly independent solutions of the linear differential equation f′′+A(z)f=0.


2014 ◽  
Vol 12 (11) ◽  
Author(s):  
Bakarime Diomande ◽  
Lucian Maticiuc

AbstractOur aim is to study the following new type of multivalued backward stochastic differential equation: $$\left\{ \begin{gathered} - dY\left( t \right) + \partial \phi \left( {Y\left( t \right)} \right)dt \ni F\left( {t,Y\left( t \right),Z\left( t \right),Y_t ,Z_t } \right)dt + Z\left( t \right)dW\left( t \right), 0 \leqslant t \leqslant T, \hfill \\ Y\left( T \right) = \xi , \hfill \\ \end{gathered} \right.$$ where ∂φ is the subdifferential of a convex function and (Y t, Z t):= (Y(t + θ), Z(t + θ))θ∈[−T,0] represent the past values of the solution over the interval [0, t]. Our results are based on the existence theorem from Delong & Imkeller, Ann. Appl. Probab., 2010, concerning backward stochastic differential equations with time delayed generators.


Author(s):  
P. K. Sahu ◽  
S. Saha Ray

In this paper, Chebyshev wavelet method (CWM) has been applied to solve the second-order singular differential equations of Lane–Emden type. Firstly, the singular differential equation has been converted to Volterra integro-differential equation and then solved by the CWM. The properties of Chebyshev wavelets were first presented. The properties of Chebyshev wavelets via Gauss–Legendre rule were used to reduce the integral equations to a system of algebraic equations which can be solved numerically by Newton’s method. Convergence analysis of CWM has been discussed. Illustrative examples have been provided to demonstrate the validity and applicability of the present method.


Sign in / Sign up

Export Citation Format

Share Document