DYNAMIC STOCHASTIC GAMES OF RESOURCE ALLOCATION BETWEEN PRODUCTION AND CONSUMPTION

1999 ◽  
Vol 01 (02) ◽  
pp. 149-158 ◽  
Author(s):  
VICTOR DOMANSKY

Controlled by several agents, multistage processes of resource allocation between production and consumption with random production functions are considered as non-cooperative dynamic stochastic games. For these games, the Nash Equilibria are constructed satisfying the criteria of maximisation of some kind of "public utility". Both finite and infinite horizons of planning are examined.

2018 ◽  
Vol 17 (1) ◽  
pp. 59-79 ◽  
Author(s):  
Ulrich Doraszelski ◽  
Kenneth L. Judd

Author(s):  
Krishnendu Chatterjee ◽  
Rupak Majumdar ◽  
Marcin Jurdziński

Author(s):  
João P. Hespanha

This chapter discusses several classes of potential games that are common in the literature and how to derive the Nash equilibrium for such games. It first considers identical interests games and dummy games before turning to decoupled games and bilateral symmetric games. It then describes congestion games, in which all players are equal, in the sense that the cost associated with each resource only depends on the total number of players using that resource and not on which players use it. It also presents other potential games, including the Sudoku puzzle, and goes on to analyze the distributed resource allocation problem, the computation of Nash equilibria for potential games, and fictitious play. It concludes with practice exercises and their corresponding solutions, along with additional exercises.


Author(s):  
Michael Kumhof ◽  
Dirk Muir

This paper, using a six-region dynamic stochastic general equilibrium model of the world economy, assesses the output and current account implications of permanent oil supply shocks hitting the world economy. For modest-sized shocks and conventional production technologies, the effects are modest. But for larger shocks, for elasticities of substitution that decline as oil usage is reduced to a minimum, and for production functions in which oil acts as a critical enabler of technologies, output growth could drop significantly. Also, oil prices could become so high that smooth adjustment, as assumed in the model, may become very difficult.


2020 ◽  
Vol 13 ◽  
pp. 304-323
Author(s):  
Dmitrii Lozovanu ◽  
◽  
Stefan Pickl ◽  

We consider infinite n-person stochastic games with limiting average payoffs criteria for the players. The main results of the paper are concerned with the existence of stationary Nash equilibria and determining the optimal strategies of the players in the games with finite state and action spaces. We present conditions for the existence of stationary Nash equilibria in the considered games and propose an approach for determining the optimal stationary strategies of the players if such strategies exist.


Author(s):  
Matteo Basei ◽  
Haoyang Cao ◽  
Xin Guo

We consider a general class of nonzero-sum N-player stochastic games with impulse controls, where players control the underlying dynamics with discrete interventions. We adopt a verification approach and provide sufficient conditions for the Nash equilibria (NEs) of the game. We then consider the limiting situation when N goes to infinity, that is, a suitable mean-field game (MFG) with impulse controls. We show that under appropriate technical conditions, there exists a unique NE solution to the MFG, which is an ϵ-NE approximation to the N-player game, with [Formula: see text]. As an example, we analyze in detail a class of two-player stochastic games which extends the classical cash management problem to the game setting. In particular, we present numerical analysis for the cases of the single player, the two-player game, and the MFG, showing the impact of competition on the player’s optimal strategy, with sensitivity analysis of the model parameters.


Sign in / Sign up

Export Citation Format

Share Document