scholarly journals Regularity of structure sheaves of varieties with isolated singularities

Author(s):  
Joaquín Moraga ◽  
Jinhyung Park ◽  
Lei Song

Let [Formula: see text] be a non-degenerate normal projective variety of codimension [Formula: see text] and degree [Formula: see text] with isolated [Formula: see text]-Gorenstein singularities. We prove that the Castelnuovo–Mumford regularity [Formula: see text], as predicted by the Eisenbud–Goto regularity conjecture. Such a bound fails for general projective varieties by a recent result of McCullough–Peeva. The main techniques are Noma’s classification of non-degenerate projective varieties and Nadel vanishing for multiplier ideals. We also classify the extremal and the next to extremal cases.

2020 ◽  
Vol 32 (5) ◽  
pp. 1199-1209
Author(s):  
Euisung Park

AbstractClassical Castelnuovo Lemma shows that the number of linearly independent quadratic equations of a nondegenerate irreducible projective variety of codimension c is at most {{{c+1}\choose{2}}} and the equality is attained if and only if the variety is of minimal degree. Also G. Fano’s generalization of Castelnuovo Lemma implies that the next case occurs if and only if the variety is a del Pezzo variety. Recently, these results are extended to the next case in [E. Park, On hypersurfaces containing projective varieties, Forum Math. 27 2015, 2, 843–875]. This paper is intended to complete the classification of varieties satisfying at least {{{c+1}\choose{2}}-3} linearly independent quadratic equations. Also we investigate the zero set of those quadratic equations and apply our results to projective varieties of degree {\geq 2c+1}.


2018 ◽  
Vol 2020 (23) ◽  
pp. 9011-9074 ◽  
Author(s):  
Omegar Calvo-Andrade ◽  
Maurício Corrêa ◽  
Marcos Jardim

Abstract We study codimension one holomorphic distributions on the projective three-space, analyzing the properties of their singular schemes and tangent sheaves. In particular, we provide a classification of codimension one distributions of degree at most 2 with locally free tangent sheaves and show that codimension one distributions of arbitrary degree with only isolated singularities have stable tangent sheaves. Furthermore, we describe the moduli space of distributions in terms of Grothendieck’s Quot-scheme for the tangent bundle. In certain cases, we show that the moduli space of codimension one distributions on the projective space is an irreducible, nonsingular quasi-projective variety. Finally, we prove that every rational foliation and certain logarithmic foliations have stable tangent sheaves.


2000 ◽  
Vol 157 ◽  
pp. 129-147 ◽  
Author(s):  
Stefan Kebekus

In the present work we describe 3-dimensional complexSL2-varieties where the genericSL2-orbit is a surface. We apply this result to classify the minimal 3-dimensional projective varieties with Picard-number 1 where a semisimple group acts such that the generic orbits are 2-dimensional.This is an ingredient of the classification [Keb99] of the 3-dimensional relatively minimal quasihomogeneous varieties where the automorphism group is not solvable.


Author(s):  
Naoki Fujita ◽  
Akihiro Higashitani

Abstract A Newton–Okounkov body is a convex body constructed from a projective variety with a globally generated line bundle and with a higher rank valuation on the function field, which gives a systematic method of constructing toric degenerations of projective varieties. Its combinatorial properties heavily depend on the choice of a valuation, and it is a fundamental problem to relate Newton–Okounkov bodies associated with different kinds of valuations. In this paper, we address this problem for flag varieties using the framework of combinatorial mutations, which was introduced in the context of mirror symmetry for Fano manifolds. By applying iterated combinatorial mutations, we connect specific Newton–Okounkov bodies of flag varieties including string polytopes, Nakashima–Zelevinsky polytopes, and Feigin–Fourier–Littelmann–Vinberg polytopes.


2018 ◽  
Vol 2020 (7) ◽  
pp. 1942-1956
Author(s):  
Davide Lombardo ◽  
Andrea Maffei

Abstract We determine which complex abelian varieties can be realized as the automorphism group of a smooth projective variety.


Author(s):  
Mihai Fulger

Abstract We develop a local positivity theory for movable curves on projective varieties similar to the classical Seshadri constants of nef divisors. We give analogues of the Seshadri ampleness criterion, of a characterization of the augmented base locus of a big and nef divisor, and of the interpretation of Seshadri constants as an asymptotic measure of jet separation. As application, we show in any characteristic that if $C$ is a smooth curve with ample normal bundle in a smooth projective variety then the class of $C$ is in the strict interior of the Mori cone. This was conjectured by Peternell and proved by Ottem and Lau in Characteristic 0.


1969 ◽  
Vol 21 ◽  
pp. 1238-1244 ◽  
Author(s):  
J. L. Alperin

The concept of an abelian group is central to group theory. For that reason many generalizations have been considered and exploited. One, in particular, is the idea of an n-abelian group (6). If n is an integer and n > 1, then a group G is n-abelian if, and only if,(xy)n = xnynfor all elements x and y of G. Thus, a group is 2-abelian if, and only if, it is abelian, while non-abelian n-abelian groups do exist for every n > 2.Many results pertaining to the way in which groups can be constructed from abelian groups can be generalized to theorems on n-abelian groups (1; 2). Moreover, the case of n = p, a prime, is useful in the study of finite p-groups (3; 4; 5). Moreover, a recent result of Weichsel (9) gives a description of all p-abelian finite p-groups.


2015 ◽  
Vol 160 (2) ◽  
pp. 257-277 ◽  
Author(s):  
SIJONG KWAK ◽  
JINHYUNG PARK

AbstractThe aim of this paper is to study geometric properties of non-degenerate smooth projective varieties of small degree from a birational point of view. First, using the positivity property of double point divisors and the adjunction mappings, we classify smooth projective varieties in $\mathbb{P}$r of degree d ⩽ r + 2, and consequently, we show that such varieties are simply connected and rationally connected except in a few cases. This is a generalisation of P. Ionescu's work. We also show the finite generation of Cox rings of smooth projective varieties in $\mathbb{P}$r of degree d ⩽ r with counterexamples for d = r + 1, r + 2. On the other hand, we prove that a non-uniruled smooth projective variety in $\mathbb{P}$r of dimension n and degree d ⩽ n(r − n) + 2 is Calabi–Yau, and give an example that shows this bound is also sharp.


Sign in / Sign up

Export Citation Format

Share Document