FREE VIBRATION RESPONSE OF CYLINDRICAL PANELS WITH HIGHER ORDER SHEAR DEFORMATION THEORY

2005 ◽  
Vol 05 (03) ◽  
pp. 409-434 ◽  
Author(s):  
HUMAYUN R. H. KABIR ◽  
HASAN ASKAR

Presented here is an analytical solution to the free vibration problem of an isotropic cylindrical panel with SS2-type simply supported boundary conditions based on Reddy's third order shear deformation shell theory. Using the principle of virtual work, the Reddy's shell theory generates five highly coupled partial differential equations in terms of three unknown displacements and two unknown rotations. The partial differential equations in conjunction with the prescribed boundary conditions are solved using displacement functions expressed in terms of double Fourier series expansion. Cylindrical panels with various aspect and thickness ratios are considered in the study of convergence behavior and parametric variation of the eigenvalues. The eigenvalues and mode shapes obtained in this study are compared with those obtained from the finite element software package ANSYS. The hitherto unavailable analytical solutions can be used as benchmarks for checking the accuracy of various approximate methods such as the Rayleigh–Ritz, finite element and finite difference methods.

Author(s):  
Firooz Bakhtiari-Nejad ◽  
Mahnaz Shamshirsaz ◽  
Mohammad Mohammadzadeh ◽  
Sasan Samie

In this paper free vibration analysis of skew plates with fully clamped boundary condition made of functionally graded materials is investigated. The study is based on the second order shear deformation plate theory (SSDT) using Generalized Differential Quadrature (GDQ) method. With a proper transformation, partial differential equations of a rectangular plate in Cartesian coordinates into skew coordinates are obtained; the governing differential equations are seven second order partial differential equations. The comparison of simulation results with those presented previously in the literature shows the accuracy of the proposed method. Also, fast rate of convergence is achieved by this method. Finally, the effects of angle of skew plate, power law index and plate geometrical parameters on the natural frequencies of the plate are also obtained and the related results are presented in this paper.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tamaz Vashakmadze

Abstract The basic problem of satisfaction of boundary conditions is considered when the generalized stress vector is given on the surfaces of elastic plates and shells. This problem has so far remained open for both refined theories in a wide sense and hierarchic type models. In the linear case, it was formulated by I. N. Vekua for hierarchic models. In the nonlinear case, bending and compression-expansion processes do not split and in this context the exact structure is presented for the system of differential equations of von Kármán–Mindlin–Reisner (KMR) type, constructed without using a variety of ad hoc assumptions since one of the two relations of this system in the classical form is the compatibility condition, but not the equilibrium equation. In this paper, a unity mathematical theory is elaborated in both linear and nonlinear cases for anisotropic inhomogeneous elastic thin-walled structures. The theory approximately satisfies the corresponding system of partial differential equations and the boundary conditions on the surfaces of such structures. The problem is investigated and solved for hierarchic models too. The obtained results broaden the sphere of applications of complex analysis methods. The classical theory of finding a general solution of partial differential equations of complex analysis, which in the linear case was thoroughly developed in the works of Goursat, Weyl, Walsh, Bergman, Kolosov, Muskhelishvili, Bers, Vekua and others, is extended to the solution of basic nonlinear differential equations containing the nonlinear summand, which is a composition of Laplace and Monge–Ampére operators.


2007 ◽  
Vol 15 (03) ◽  
pp. 353-375 ◽  
Author(s):  
TIMOTHY WALSH ◽  
MONICA TORRES

In this paper, weak formulations and finite element discretizations of the governing partial differential equations of three-dimensional nonlinear acoustics in absorbing fluids are presented. The fluid equations are considered in an Eulerian framework, rather than a displacement framework, since in the latter case the corresponding finite element formulations suffer from spurious modes and numerical instabilities. When taken with the governing partial differential equations of a solid body and the continuity conditions, a coupled formulation is derived. The change in solid/fluid interface conditions when going from a linear acoustic fluid to a nonlinear acoustic fluid is demonstrated. Finite element discretizations of the coupled problem are then derived, and verification examples are presented that demonstrate the correctness of the implementations. We demonstrate that the time step size necessary to resolve the wave decreases as steepening occurs. Finally, simulation results are presented on a resonating acoustic cavity, and a coupled elastic/acoustic system consisting of a fluid-filled spherical tank.


1950 ◽  
Vol 17 (4) ◽  
pp. 377-380
Author(s):  
R. D. Mindlin ◽  
L. E. Goodman

Abstract A procedure is described for extending the method of separation of variables to the solution of beam-vibration problems with time-dependent boundary conditions. The procedure is applicable to a wide variety of time-dependent boundary-value problems in systems governed by linear partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document