DERAILMENT RISK ANALYSIS OF A TILTING RAILWAY VEHICLE MOVING OVER IRREGULAR TRACKS UNDER WIND LOADS

2013 ◽  
Vol 13 (08) ◽  
pp. 1350038 ◽  
Author(s):  
YUNG-CHANG CHENG ◽  
CHENG-HAO HUANG ◽  
CHEN-MING KUO ◽  
CHERN-HWA CHEN

Based on the nonlinear creep model and Kalker's linear theory, this paper studies the governing differential equations of motion for a tilting railway vehicle moving over irregular curved tracks under wind loads. The tilting vehicle is modeled by a 24-degree-of-freedom (24-DOF) car system, considering the lateral, roll and yaw motions of each wheelset, the lateral, vertical, roll and yaw motions of each bogie frame and the car body. The derailment quotients of the tilting railway vehicle with the wheelsets moving over irregular rails in the lateral direction and the car body acted upon by the wind loads are investigated for various tilting angles. The analysis results show that in general, the derailment quotient of the wheelset increases as the tilting angle of the railway vehicle increases. When the railway vehicle moves at low speeds, the derailment quotient calculated for the case with rail irregularities is greater than that for the case with no rail irregularities. Moreover, the derailment quotient of a wheelset moving over curved tracks of various radii is presented. Finally, the derailment quotient computed for the case under wind loads is greater than that free of wind loads. As a result, the influence of rail irregularities and wind loads on the derailment risk of a tilting vehicle cannot be ignored.

2016 ◽  
Vol 16 (09) ◽  
pp. 1550056 ◽  
Author(s):  
Yung-Chang Cheng ◽  
Chin-Te Hsu

The ride comfort of a tilting railway vehicle moving on curved tracks with rail irregularities is studied. Using the nonlinear creep model and Kalker's linear theory, the governing differential equations of motion for a tilting railway vehicle running on irregular tracks are first derived. The tilting railway vehicle is modeled by a 27 degree-of-freedom (DOF) car system, considering the lateral displacement, vertical displacement, roll angle and yaw angle of both the wheelsets and bogie frames, as well as the lateral displacement, roll angle and yaw angle of the car body. Based on the international standard ISO 2631-1, the effect of vehicle speed on the ride comfort index of the tilting vehicle is investigated for various tilting angles, using both linear and nonlinear creep models, and various radii of curved tracks, as well as for various suspension parameters. Finally, the ride comfort indices computed with rail irregularities are found to be higher than those with no rail irregularities, indicating that the effect of rail irregularities on the ride comfort of a tilting vehicle cannot be disregarded in practice.


2011 ◽  
Vol 11 (06) ◽  
pp. 1103-1118 ◽  
Author(s):  
YUNG-CHANG CHENG ◽  
CHERN-HWA CHEN ◽  
CHE-JUNG YANG

Based on Kalker's linear theory and the heuristic nonlinear creep model, the nonlinear coupled differential equations of motion are derived for a vehicle model with 20 degrees of freedom, considering the lateral displacement and yaw angle of each wheelset, the lateral displacement, vertical displacement, roll angle and yaw angle of the bogie frame, and the car body moving on a curved track. The dynamic responses of a railway vehicle with wind loads acting laterally and vertically, and wind moments acting about the longitudinal axis of the car body are investigated. The analysis results indicate that the oscillation amplitude of the car body increases as the wind speed increases. Furthermore, the average amplitude of oscillation of the wheelset increases with the wind speed as well. It is concluded that the influence of wind loads on the dynamic stability of a vehicle cannot be ignored.


Author(s):  
Yung-Chang Cheng ◽  
Sen-Yung Lee

A new dynamic model of railway vehicle moving on curved tracks is proposed. In this new model, the motion of the car body is considered and the motion of the tuck frame is not restricted by a virtual boundary. Based on the heuristic nonlinear creep model, the nonlinear coupled differential equations of the motion of a fourteen degrees of freedom car system, considering the lateral displacement and the yaw angle of the each wheelset, the truck frame and the car body, moving on curved tracks are derived in completeness. To illustrate the accuracy of the analysis, the limiting cases are examined. In addition, the influences of the suspension parameters on the critical hunting speeds evaluated via the linear and the nonlinear creep models respectively are studied. Furthermore, the influences of the suspension parameters on the critical hunting speeds evaluated via the fourteen degrees of freedom car system and the six degrees of freedom truck system, which the motion of the tuck frame is restricted by a virtual boundary, are compared.


2011 ◽  
Vol 110-116 ◽  
pp. 186-195 ◽  
Author(s):  
Yung Chang Cheng ◽  
Chern Hwa Chen ◽  
Che Jung Yang

Based on the heuristic nonlinear creep model, the nonlinear coupled differential equations of the motion of a 12 degree-of-freedom (12-DOF) bogie system which takes account of the lateral displacement, vertical displacement, the roll angle and the yaw angle of the each wheelset and the bogie frame, moving on curved tracks are derived. The nonlinear creep forces and moments are constructed via the saturation constant of the nonlinear creep model in completeness. The effect of the suspension parameters of a bogie system on the derailment quotient is investigated. Results obtained in this study show that the derailment quotient of a bogie system increases as the vehicle speed increases. In addition, the derailment quotient of a bogie system is generally decreased with the increasing values of suspension parameters.


2014 ◽  
Vol 14 (04) ◽  
pp. 1450004 ◽  
Author(s):  
Yung-Chang Cheng ◽  
Chin-Te Hsu

Using a heuristic linear creep model, this study derives the governing differential equations of motion for the railway vehicle traveling on curved tracks. The railway vehicle is modeled as a car system with 27 degrees-of-freedom (DOFs), taking into account the lateral and vertical displacements, roll and yaw angles of the wheelsets and truck frames, as well as the lateral displacement, roll and yaw angles of the car body. The effects of railway vehicle speeds on the derailment quotients and offload factors related to running safety are evaluated by both the linear and nonlinear creep models for various radii of curved tracks. Using the Sperling and modified Sperling index formulas, the effects of railway vehicle speeds on lateral riding quality and comfort are illustrated for the two models with various radii of curved tracks. Furthermore, the effects of railway vehicle speeds on the lateral Sperling comfort index of the 27-DOF car model are presented and compared for various suspension parameters. Finally, the acceptable region for riding quality and comfort are drawn.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Sen-Yung Lee ◽  
Yung-Chang Cheng

A new dynamic model of railway vehicle moving on curved tracks is proposed. In the new model, the motion of the car body is considered and the motion of the truck frame is not restricted by a virtual boundary. Based on the heuristic nonlinear creep model, the nonlinear coupled differential equations of the motion of an eight degrees of freedom car system—considering the lateral displacement and the yaw angle of each wheelset, the truck frame, and the half car body—moving on curved tracks are derived completely. To illustrate the accuracy of the analysis, the limiting cases are examined. It is shown that the influence of the gyroscopic moment of the wheelsets on the critical hunting speed is negligible. In addition, the influences of the suspension parameters, including those losing in the six degrees of freedom system, on the critical hunting speeds evaluated via the linear and the nonlinear creep models are studied and compared.


2017 ◽  
Vol 17 (09) ◽  
pp. 1750098 ◽  
Author(s):  
Yung-Chang Cheng ◽  
Chern-Hwa Chen ◽  
Chin-Te Hsu

Utilizing a nonlinear creep model, the dynamic behavior of tilting railway vehicles moving over curved tracks with rail irregularities and under earthquakes and wind loads is studied. The car model adopted consists of 28 degrees of freedom, capable of simulating the lateral, vertical, roll and yaw motions for the wheelsets, truck frames and car body. The derailment quotient is investigated to analyze the running safety of a tilting railway vehicle using the linear and nonlinear creep models, while considering the rail irregularities and environmental forces for various tilting angles. Generally, the derailment risk of the tilting railway vehicle is higher than that of non-tilting railway vehicle with or without rail irregularities and environmental forces. The derailment quotients calculated by the linear creep model are underestimated for a tilting railway vehicle. In addition, the derailment quotients evaluated for rough rails and under environmental forces are higher than those obtained for smooth rails with no environmental forces. It is confirmed that rail irregularities and each type of environmental forces have decisive effects on derailment quotients. They are compared and ranked according to their significance.


1974 ◽  
Vol 96 (4) ◽  
pp. 1168-1176 ◽  
Author(s):  
E. H. Law

The nonlinear equations of motion for a railway vehicle wheelset having profiled wheels and contact of the wheel flange with flexible rails are presented. The effects of spin creep and gyroscopic terms are included. The rails are considered to have random lateral irregularities which are described by prescribed power spectra. The equations of motion are integrated numerically and the effects on the dynamic response of quantities such as speed, track roughness, wheel wear, flange clearance, and lateral stiffness of the rails are investigated.


2011 ◽  
Vol 199-200 ◽  
pp. 239-242
Author(s):  
Chern Hwa Chen ◽  
Yung Chang Cheng ◽  
Shun Chin Yang ◽  
Yuh Yi Lin ◽  
Cheng Hsin Chang ◽  
...  

Based on the heuristic nonlinear creep model, the nonlinear coupled differential equations of the motion of a 12 degree-of-freedom (12-DOF) bogie system which takes account of the lateral displacement, vertical displacement, the roll angle and the yaw angle of the each wheelset and the bogie frame, moving on curved tracks are derived. The nonlinear creep forces and moments are constructed via the saturation constant of the nonlinear creep model in completeness. The effect of the suspension parameters of a bogie system on the derailment quotient is investigated. Results obtained in this study show that the derailment quotient of a bogie system increases as the vehicle speed increases. In addition, the derailment quotient of a bogie system is generally decreased with the increasing values of suspension parameters.


2007 ◽  
Vol 14 (6) ◽  
pp. 429-446 ◽  
Author(s):  
Ping Lou ◽  
Qing-yuan Zeng

Based on energy approach, the equations of motion in matrix form for the railway freight vehicle-bridge interaction system are derived, in which the dynamic contact forces between vehicle and bridge are considered as internal forces. The freight vehicle is modelled as a multi-rigid-body system, which comprises one car body, two bogie frames and four wheelsets. The bogie frame is linked with the car body through spring-dashpot suspension systems, and the bogie frame is rigidly linked with wheelsets. The bridge deck, together with railway track resting on bridge, is modelled as a simply supported Bernoulli-Euler beam and its deflection is described by superimposing modes. The direct time integration method is applied to obtain the dynamic response of the vehicle-bridge interaction system at each time step. A computer program has been developed for analyzing this system. The correctness of the proposed procedure is confirmed by one numerical example. The effect of different beam mode numbers and various surface irregularities of beam on the dynamic responses of the vehicle-bridge interaction system are investigated.


Sign in / Sign up

Export Citation Format

Share Document