Vibration Behavior of Gravity-Loaded Whirling Micro-Scale Shafts Influenced by an Axial Magnetic Field

2017 ◽  
Vol 17 (09) ◽  
pp. 1750110 ◽  
Author(s):  
K. B. Mustapha ◽  
Z. W. Zhong ◽  
S. B. A. Kashem

Some high-speed rotating micro-machines and micro-vibration devices rely on the use of whirling micro-shafts subject to the effect of gravity and magnetic fields. At present, the consequences of the interaction between the elastic deformation of such shafts and the magnetic/gravitational field effects remain unresolved. Focusing on micro-scale whirling shafts with very high torsional rigidity, this study presents a theoretical treatment grounded in the theory of micro-continuum elasticity to examine the ramification of this interaction. The differential transformation method (DTM) is used to obtain extensive numerical results for qualitative assessments of the magnetic-gravitational effects interaction on standing, hanging and horizontally positioned spinning micro-scale shafts. The influence of bearing-support flexibility on the response of the whirling micro-shaft is also considered with rotational and translational springs. The gravitational sag reduces the stability of whirling standing micro-shafts and increases that of the hanging micro-shafts. Further, for all the micro-shafts configurations investigated, the magnetic field is observed to stiffen the response of the shaft and favorably shifts the critical points of vibration of the whirling shafts forward.

2000 ◽  
Vol 123 (1) ◽  
pp. 31-42
Author(s):  
J. Liu ◽  
G. Talmage ◽  
J. S. Walker

The method of normal modes is used to examine the stability of an azimuthal base flow to both axisymmetric and plane-polar disturbances for an electrically conducting fluid confined between stationary, concentric, infinitely-long cylinders. An electric potential difference exists between the two cylinder walls and drives a radial electric current. Without a magnetic field, this flow remains stationary. However, if an axial magnetic field is applied, then the interaction between the radial electric current and the magnetic field gives rise to an azimuthal electromagnetic body force which drives an azimuthal velocity. Infinitesimal axisymmetric disturbances lead to an instability in the base flow. Infinitesimal plane-polar disturbances do not appear to destabilize the base flow until shear-flow transition to turbulence.


1958 ◽  
Vol 36 (11) ◽  
pp. 1509-1525 ◽  
Author(s):  
E. R. Niblett

Chandrasekhar's theory of the stability of viscous flow of an electrically conducting fluid between coaxial rotating cylinders with perfectly conducting walls is extended to include the case of non-conducting walls, and it is found that their effect is to reduce the critical Taylor numbers and increase the wavelength of the instability patterns by considerable amounts. An experiment designed to measure the values of magnetic field and rotation speed at the onset of instability in mercury between perspex cylinders is described. The radioactive isotopes Hg197 and Hg203 were used to trace the flow. The results support the theoretical prediction that the boundary conditions can have a large effect on the motion.


The MHD stability problem for dissipative Couette flow in a narrow gap between corotating, conducting cylinders with an axial magnetic field is solved exactly. Results are presented for an arbitrary magnetic field; in particular, previous results on the zero and infinite magnetic field limits are verified.


2004 ◽  
Vol 02 (02) ◽  
pp. 145-159 ◽  
Author(s):  
ISOM H. HERRON

The stability of viscous flow between rotating cylinders in the presence of a constant axial magnetic field is considered. The boundary conditions for general conductivities are examined. It is proved that the Principle of Exchange of Stabilities holds at zero magnetic Prandtl number, for all Chandrasekhar numbers, when the cylinders rotate in the same direction, the circulation decreases outwards, and the cylinders have insulating walls. The result holds for both the finite gap and the narrow gap approximation.


2017 ◽  
Vol 4 (1) ◽  
pp. 99-103
Author(s):  
B. Tezenas du Montcel ◽  
P. Chapelle ◽  
A. Jardy ◽  
C. Creusot

The distribution of cathode spots in a CuCr25 vacuum arc controlled by an axial magnetic field and ignited on the lateral surface of the cathode is investigated for long gap distances, from the processing of high-speed video images. The processing method includes also estimating the current carried by a single spot and reconstructing the distribution of the current density at the cathode. Various distributions depending partly on the arc current are described.


1982 ◽  
Vol 28 (1) ◽  
pp. 113-124 ◽  
Author(s):  
Mahinder S. Uberoi ◽  
Chuen-Yen Chow

Self-consistent infinitesimal perturbations of electron density and electric field are used to analyse the stability of the plasma. The axisymmetric perturbations are stable for any magnetic and electric field strengths. The non-axisymmetric perturbations with azimuthal modes m ≥ 1 and less than a certain integer are unstable for certain ranges of magnetic and electric fields. The mode m = 2 can be more unstable than the mode m = 1. Previous analysis by other authors was confined to the case m = 1 and the perturbations were not self-consistent. Our results differ significantly from the earlier results.


1999 ◽  
Vol 394 ◽  
pp. 281-302 ◽  
Author(s):  
M. PRANGE ◽  
M. WANSCHURA ◽  
H. C. KUHLMANN ◽  
H. J. RATH

The stability of axisymmetric steady thermocapillary convection of electrically conducting fluids in half-zones under the influence of a static axial magnetic field is investigated numerically by linear stability theory. In addition, the energy transfer between the basic state and a disturbance is considered in order to elucidate the mechanics of the most unstable mode. Axial magnetic fields cause a concentration of the thermocapillary flow near the free surface of the liquid bridge. For the low Prandtl number fluids considered, the most dangerous disturbance is a non-axisymmetric steady mode. It is found that axial magnetic fields act to stabilize the basic state. The stabilizing effect increases with the Prandtl number and decreases with the zone height, the heat transfer rate at the free surface and buoyancy when the heating is from below. The magnetic field also influences the azimuthal symmetry of the most unstable mode.


Sign in / Sign up

Export Citation Format

Share Document