DWT-BASED VIDEO DATA HIDING ROBUST TO MPEG COMPRESSION AND FRAME LOSS

2005 ◽  
Vol 05 (01) ◽  
pp. 111-133 ◽  
Author(s):  
HONGMEI LIU ◽  
JIWU HUANG ◽  
YUN Q. SHI

In this paper, we propose a blind video data-hiding algorithm in DWT (discrete wavelet transform) domain. It embeds multiple information bits into uncompressed video sequences. The major features of this algorithm are as follows. (1) Development of a novel embedding strategy in DWT domain. Different from the existing schemes based on DWT that have explicitly excluded the LL subband coefficients from data embedding, we embed data in the LL subband for better invisibility and robustness. The underlying idea comes from our qualitative and quantitative analysis of the DWT coefficients magnitude distribution over commonly used images. The experimental results confirm the superiority of the proposed embedding strategy. (2) To combat temporal attacks, which will destroy the synchronization of hidden data that is necessary in data retrieval, we develop an effective temporal synchronization technique. Compared with the sliding correlation proposed in the existing algorithms, our synchronization technique is more advanced. (3) We adopt a new 3D interleaving technique to combat bursts of errors, while reducing random error probabilities in data detection by exploiting ECC (error correcting coding). The detection error rate with 3D interleaving is much lower than that without 3D interleaving when frame loss rate is below 50%. (4) Take a carefully designed measure in bit embedding to guarantee the invisibility of information. In experiments, we can embed a string of 402 bytes (excluding the redundant bits associated with ECC) in 96 frames of the CIF format sequence. The experimental results have demonstrated that the embedded information bits are perceptually transparent when the frames in the sequence are viewed either as still images or played continuously. The hidden information is robust to manipulations, such as MPEG-2 compression, scaling, additive random noise, and frame loss.

Fractals ◽  
2015 ◽  
Vol 23 (04) ◽  
pp. 1550037 ◽  
Author(s):  
D. C. MISHRA ◽  
R. K. SHARMA ◽  
MAYANK DAWAR ◽  
M. HANMANDLU

In this cryptosystem, we have presented a novel technique for security of video data by using matrix affine cipher (MAC) combined with two-dimensional discrete wavelet transform (2D-DWT). Existing schemes for security of video data provides only one layer of security, but the presented technique provides two layers of security for video data. In this cryptosystem, keys and arrangement of MAC parameters are imperative for decryption process. In this cryptosystem, if the attacker knows about all the exact keys, but has no information about the specific arrangement of MAC parameters, then the information of original video cannot be recovered from the encrypted video. Experimental results on standard examples support to the robustness and appropriateness of the presented cryptosystem of video encryption and decryption. The statistical analysis of the experimental results based on standard examples critically examine the behavior of the proposed technique. Comparison between existing schemes for security of video with the presented cryptosystem is also provided for the robustness of the proposed cryptosystem.


2020 ◽  
Vol 2020 (4) ◽  
pp. 116-1-116-7
Author(s):  
Raphael Antonius Frick ◽  
Sascha Zmudzinski ◽  
Martin Steinebach

In recent years, the number of forged videos circulating on the Internet has immensely increased. Software and services to create such forgeries have become more and more accessible to the public. In this regard, the risk of malicious use of forged videos has risen. This work proposes an approach based on the Ghost effect knwon from image forensics for detecting forgeries in videos that can replace faces in video sequences or change the mimic of a face. The experimental results show that the proposed approach is able to identify forgery in high-quality encoded video content.


Author(s):  
Yanji Chen ◽  
Mieczyslaw M. Kokar ◽  
Jakub J. Moskal

AbstractThis paper describes a program—SPARQL Query Generator (SQG)—which takes as input an OWL ontology, a set of object descriptions in terms of this ontology and an OWL class as the context, and generates relatively large numbers of queries about various types of descriptions of objects expressed in RDF/OWL. The intent is to use SQG in evaluating data representation and retrieval systems from the perspective of OWL semantics coverage. While there are many benchmarks for assessing the efficiency of data retrieval systems, none of the existing solutions for SPARQL query generation focus on the coverage of the OWL semantics. Some are not scalable since manual work is needed for the generation process; some do not consider (or totally ignore) the OWL semantics in the ontology/instance data or rely on large numbers of real queries/datasets that are not readily available in our domain of interest. Our experimental results show that SQG performs reasonably well with generating large numbers of queries and guarantees a good coverage of OWL axioms included in the generated queries.


2012 ◽  
Vol 6-7 ◽  
pp. 428-433
Author(s):  
Yan Wei Li ◽  
Mei Chen Wu ◽  
Tung Shou Chen ◽  
Wien Hong

We propose a reversible data hiding technique to improve Hong and Chen’s (2010) method. Hong and Chen divide the cover image into pixel group, and use reference pixels to predict other pixel values. Data are then embedded by modifying the prediction errors. However, when solving the overflow and underflow problems, they employ a location map to record the position of saturated pixels, and these pixels will not be used to carry data. In their method, if the image has a plenty of saturated pixels, the payload is decreased significantly because a lot of saturated pixels will not joint the embedment. We improve Hong and Chen’s method such that the saturated pixels can be used to carry data. The positions of these saturated pixels are then recorded in a location map, and the location map is embedded together with the secret data. The experimental results illustrate that the proposed method has better payload, will providing a comparable image quality.


2018 ◽  
Vol 8 (7) ◽  
pp. 1178 ◽  
Author(s):  
Sen Kuo ◽  
Yi-Rou Chen ◽  
Cheng-Yuan Chang ◽  
Chien-Wen Lai

This paper presents the development of active noise control (ANC) for light-weight earphones, and proposes using music or natural sound to estimate the critical secondary path model instead of extra random noise. Three types of light-weight ANC earphones including in-ear, earbud, and clip phones are developed. Real-time experiments are conducted to evaluate their performance using the built-in microphone inside KEMAR’s ear and to compare with commercially-available ANC headphones and earphones. Experimental results show that the developed light-weight ANC earphones achieve higher noise reduction than the commercial ANC headphones and earphones, and the in-ear ANC earphone has the best noise reduction performance.


Author(s):  
Kimiaki Shirahama ◽  
Kuniaki Uehara

This paper examines video retrieval based on Query-By-Example (QBE) approach, where shots relevant to a query are retrieved from large-scale video data based on their similarity to example shots. This involves two crucial problems: The first is that similarity in features does not necessarily imply similarity in semantic content. The second problem is an expensive computational cost to compute the similarity of a huge number of shots to example shots. The authors have developed a method that can filter a large number of shots irrelevant to a query, based on a video ontology that is knowledge base about concepts displayed in a shot. The method utilizes various concept relationships (e.g., generalization/specialization, sibling, part-of, and co-occurrence) defined in the video ontology. In addition, although the video ontology assumes that shots are accurately annotated with concepts, accurate annotation is difficult due to the diversity of forms and appearances of the concepts. Dempster-Shafer theory is used to account the uncertainty in determining the relevance of a shot based on inaccurate annotation of this shot. Experimental results on TRECVID 2009 video data validate the effectiveness of the method.


Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Haidong Zhong ◽  
Xianyi Chen ◽  
Qinglong Tian

Recently, reversible image transformation (RIT) technology has attracted considerable attention because it is able not only to generate stego-images that look similar to target images of the same size, but also to recover the secret image losslessly. Therefore, it is very useful in image privacy protection and reversible data hiding in encrypted images. However, the amount of accessorial information, for recording the transformation parameters, is very large in the traditional RIT method, which results in an abrupt degradation of the stego-image quality. In this paper, an improved RIT method for reducing the auxiliary information is proposed. Firstly, we divide secret and target images into non-overlapping blocks, and classify these blocks into K classes by using the K-means clustering method. Secondly, we match blocks in the last (K-T)-classes using the traditional RIT method for a threshold T, in which the secret and target blocks are paired with the same compound index. Thirdly, the accessorial information (AI) produced by the matching can be represented as a secret segment, and the secret segment can be hided by patching blocks in the first T-classes. Experimental results show that the proposed strategy can reduce the AI and improve the stego-image quality effectively.


2014 ◽  
Vol 6 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Shun Zhang ◽  
Tie-gang Gao ◽  
Fu-sheng Yang

A reversible data hiding scheme based on integer DWT and histogram modification is proposed. In the scheme, the cover media is firstly transformed by Integer DWT (Discrete Wavelet Transformation); then information is embedded through the modification of histograms of the middle and high frequency sub-bands of the DWT coefficients. In order to increase the embedding capacity, a multi-level scheme is proposed, which achieved both high embedding capacity and reversibility. Extensive experimental results have shown that the proposed scheme achieves both higher embedding capacity and lower distortion than spatial domain histogram modification based schemes; and it achieved better performance than integer DCT (Discrete Cosine Transformation) based histogram modification scheme.


Sign in / Sign up

Export Citation Format

Share Document