DYNAMIC BEHAVIORS OF A KIND OF PREDATOR–PREY SYSTEM WITH IVLEV'S AND BEDDINGTON–DEANGELIS' FUNCTIONAL RESPONSE AND IMPULSIVE RELEASE

2008 ◽  
Vol 08 (04) ◽  
pp. 667-681
Author(s):  
HONGJIAN GUO ◽  
XINYU SONG ◽  
LANSUN CHEN

A kind of one-prey two-predator system with Ivlev's and Beddington–DeAngelis' functional response and impulsive release at fixed moments is presented. It is shown that the system has a prey-free periodic solution. By using the Floquet theory and small amplitude perturbation skills, it is proved that the prey-free periodic solution of the system is locally asymptotically stable when the period of impulsive release is less than a critical value. Furthermore, permanence of the system is investigated and the condition of permanence is obtained. Finally, numerical simulations show that the system has complex properties which include periodic solution, period-doubling bifurcation, chaos, chaotic windows, half-period bifurcation. A brief discussion on our results and their relation between the continuous system and the impulsive system are given. The results obtained in this paper are confirmed by numerical simulations.

2007 ◽  
Vol 10 (02) ◽  
pp. 217-231 ◽  
Author(s):  
GUOPING PANG ◽  
LANSUN CHEN

In this paper, we investigate the extinction, permanence and dynamic complexity of the two-prey, one-predator system with Ivlev's functional response and impulsive perturbation on the predator at fixed moments. Conditions for the extinction and permanence of the system are established via the comparison theorem. Numerical simulations are carried out to explain the conclusions we obtain. Furthermore, the resulting bifurcation diagrams clearly show that the impulsive system takes on many forms of complexity including period-doubling bifurcation, period-halving bifurcation, and chaos.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Wenquan Wu

This paper is concerned with a predator-prey system with Beddington-DeAngelis functional response on time scales. By using the theory of exponential dichotomy on time scales and fixed point theory based on monotone operator, some simple conditions are obtained for the existence of at least one positive (almost) periodic solution of the above system. Further, by means of Lyapunov functional, the global attractivity of the almost periodic solution for the above continuous system is also investigated. The main results in this paper extend, complement, and improve the previously known result. And some examples are given to illustrate the feasibility and effectiveness of the main results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Nattawut Khansai ◽  
Akapak Charoenloedmongkhon

AbstractIn the present article, we propose and analyze a new mathematical model for a predator–prey system including the following terms: a Monod–Haldane functional response (a generalized Holling type IV), a term describing the anti-predator behavior of prey populations and one for an impulsive control strategy. In particular, we establish the existence condition under which the system has a locally asymptotically stable prey-eradication periodic solution. Violating such a condition, the system turns out to be permanent. Employing bifurcation theory, some conditions, under which the existence and stability of a positive periodic solution of the system occur but its prey-eradication periodic solution becomes unstable, are provided. Furthermore, numerical simulations for the proposed model are given to confirm the obtained theoretical results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Changtong Li ◽  
Sanyi Tang ◽  
Robert A. Cheke

Abstract An expectation for optimal integrated pest management is that the instantaneous numbers of natural enemies released should depend on the densities of both pest and natural enemy in the field. For this, a generalised predator–prey model with nonlinear impulsive control tactics is proposed and its dynamics is investigated. The threshold conditions for the global stability of the pest-free periodic solution are obtained based on the Floquet theorem and analytic methods. Also, the sufficient conditions for permanence are given. Additionally, the problem of finding a nontrivial periodic solution is confirmed by showing the existence of a nontrivial fixed point of the model’s stroboscopic map determined by a time snapshot equal to the common impulsive period. In order to address the effects of nonlinear pulse control on the dynamics and success of pest control, a predator–prey model incorporating the Holling type II functional response function as an example is investigated. Finally, numerical simulations show that the proposed model has very complex dynamical behaviour, including period-doubling bifurcation, chaotic solutions, chaos crisis, period-halving bifurcations and periodic windows. Moreover, there exists an interesting phenomenon whereby period-doubling bifurcation and period-halving bifurcation always coexist when nonlinear impulsive controls are adopted, which makes the dynamical behaviour of the model more complicated, resulting in difficulties when designing successful pest control strategies.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Weibing Wang ◽  
Jianhua Shen ◽  
Juan J. Nieto

We considered a nonautonomous two dimensional predator-prey system with impulsive effect. Conditions for the permanence of the system and for the existence of a unique stable periodic solution are obtained.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
P. K. Santra ◽  
G. S. Mahapatra ◽  
G. R. Phaijoo

The paper investigates the dynamical behaviors of a two-species discrete predator-prey system with Crowley–Martin functional response incorporating prey refuge proportional to prey density. The existence of equilibrium points, stability of three fixed points, period-doubling bifurcation, Neimark–Sacker bifurcation, Marottos chaos, and Control Chaos are analyzed for the discrete-time domain. The time graphs, phase portraits, and bifurcation diagrams are obtained for different parameters of the model. Numerical simulations and graphics show that the discrete model exhibits rich dynamics, which also present that the system is a chaotic and complex one. This paper attempts to present a feedback control method which can stabilize chaotic orbits at an unstable equilibrium point.


2011 ◽  
Vol 130-134 ◽  
pp. 385-390
Author(s):  
Ling Zhen Dong ◽  
Lan Sun Chen

With some theory about continuous and impulsive dynamical system, an impulsive model based on a special predator-prey system is considered. We assume that the impulsive effects occur when the density of the prey reaches a given value. For such a state-dependent impulsive system, the existence, uniqueness and orbital asymptotic stability of an order-1 periodic solution are discussed. Further, the existence of an order-2 periodic solution is also obtained, and persistence of the system is investigated.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yumin Wu ◽  
Fengde Chen ◽  
Wanlin Chen ◽  
Yuhua Lin

A nonautonomous discrete predator-prey system incorporating a prey refuge and Holling type II functional response is studied in this paper. A set of sufficient conditions which guarantee the persistence and global stability of the system are obtained, respectively. Our results show that if refuge is large enough then predator species will be driven to extinction due to the lack of enough food. Two examples together with their numerical simulations show the feasibility of the main results.


2021 ◽  
Vol 73 (4) ◽  
pp. 523-543
Author(s):  
N. N. Pelen

UDC 517.9 In this study, the two-dimensional predator-prey system with Beddington–DeAngelis type functional response with impulses is considered in a periodic environment. For this special case, necessary and sufficient conditions are found for the considered system when it has at least one -periodic solution. This result is mainly based on the continuation theorem in the coincidence degree theory and to get the globally attractive -periodic solution of the given system, an inequality is given as the necessary and sufficient condition by using the analytic structure of the system.  


Sign in / Sign up

Export Citation Format

Share Document