DEVELOPMENT AND BIOFIDELITY EVALUATION OF AN OCCUPANT BIOMECHANICAL MODEL OF A CHINESE 50TH PERCENTILE MALE FOR SIDE IMPACT

2017 ◽  
Vol 17 (07) ◽  
pp. 1740039 ◽  
Author(s):  
ZHENGWEI MA ◽  
LELE JING ◽  
FENGCHONG LAN ◽  
JINLUN WANG ◽  
JIQING CHEN

Finite element modeling has played a significant role in the study of human body biomechanical responses and injury mechanisms during vehicle impacts. However, there are very few reports on similar studies conducted in China for the Chinese population. In this study, a high-precision human body finite element model of the Chinese 50th percentile male was developed. The anatomical structures and mechanical characteristics of real human body were replicated as precise as possible. In order to analyze the model’s biofidelity in side-impact injury prediction, a global technical standard, ISO/TR 9790, was used that specifically assesses the lateral impact biofidelity of anthropomorphic test devices (ATDs) and computational models. A series of model simulations, focusing on different body parts, were carried out against the tests outlined in ISO/TR 9790. Then, the biofidelity ratings of the full human body model and different body parts were evaluated using the ISO/TR 9790 rating method. In a 0–10 rating scale, the resulting rating for the full human body model developed is 8.57, which means a good biofidelity. As to different body parts, the biofidelity ratings of the head and shoulder are excellent, while those of the neck, thorax, abdomen and pelvis are good. The resulting ratings indicate that the human body model developed in this study is capable of investigating the side-impact responses of and injuries to occupants’ different body parts. In addition, the rating of the model was compared with those of the other human body finite element models and several side-impact dummy models. This allows us to assess the robustness of our model and to identify necessary improvements.

Author(s):  
X. Gary Tan ◽  
Amit Bagchi

Traumatic brain injury (TBI) is one of the most common injuries to service members in recent conflicts. Computational models can offer insights in understanding the underlying mechanism of brain injury, which lead to the crucial development of effective personal protective equipment designed to prevent or mitigate the TBI. Historically many computational models were developed for the brain injury study. However, these models use relatively coarse mesh with a less detailed head anatomy. Many models consider the head only and thus cannot properly model the real scenario, i.e., accidental fall, blunt impact or blast loading. A whole-body finite element model can represent the real scenario but is very expensive to use. By combining the high-fidelity human head model with an articulated human body model, we developed the computational multi-fidelity human models to investigate the blunt- and blast-related TBI efficiently. A high-fidelity computational head model was generated from the high resolution image data to accurately reproduce the complex musculoskeletal and tissue structure of the head. The fast-running articulated human body model is based on the multi-body dynamics and was used to reconstruct the accidental falls. By utilizing the kinematics and force and moment at the joint of the articulated human body model, we can realistically simulate the blunt impact and assess the brain injury using the high-fidelity head model.


2019 ◽  
Vol 20 (sup2) ◽  
pp. S96-S102
Author(s):  
Derek A. Jones ◽  
James P. Gaewsky ◽  
Jeffrey T. Somers ◽  
F. Scott Gayzik ◽  
Ashley A. Weaver ◽  
...  

2014 ◽  
Vol 635-637 ◽  
pp. 502-506 ◽  
Author(s):  
Wei Min Zhuang ◽  
Qin Hua Xu

In order to improve the efficiency of the calculation of the whole car side impact finite element model,simplified model often used in research of B-pillar in passenger car. It is critical to establish a high accuracy simplified model in a short time. The relationship between the energy absorption of body parts and the calculation accuracy of simplified model was analyzed,and the result can be used as a guide for the establishment of simplified model.


2014 ◽  
Vol 18 (10) ◽  
pp. 1044-1055 ◽  
Author(s):  
Adam J. Golman ◽  
Kerry A. Danelson ◽  
James P. Gaewsky ◽  
Joel D. Stitzel

2018 ◽  
Vol 47 (2) ◽  
pp. 487-511 ◽  
Author(s):  
James P. Gaewsky ◽  
Derek A. Jones ◽  
Xin Ye ◽  
Bharath Koya ◽  
Kyle P. McNamara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document