STABILITY ANALYSIS OF SMALL COPPER NANOCLUSTERS

2012 ◽  
Vol 11 (01) ◽  
pp. 1250006
Author(s):  
PRABODH SAHAI SAXENA ◽  
PANKAJ SRIVASTAVA ◽  
ASHWANI Kr. SHRIVASTAVA

We have investigated the lowest-energy structures and electronic properties of the Cu n(n = 2–10) nanoclusters based on density functional theory (DFT) in local density approximation. The total energies, binding energies per atom, bond lengths, HOMO-LUMO gaps and ionization potentials have been calculated. The results are compared well with other theoretical and available experimental results.

2010 ◽  
Vol 24 (24) ◽  
pp. 4811-4820
Author(s):  
Y. P. ZHANG ◽  
F. S. ZHANG ◽  
Y. GAO ◽  
H. W. CHANG ◽  
G. Q. XIAO

The process of multielectron transfer from a Na 4 cluster induced by highly charged C 6+, C 4+, C 2+ and C + ions is studied using the method of time-dependent density functional theory within the local density approximation combined with the use of pseudopotential. The evolution of dipole moment changes and emitted electrons in Na 4 is obtained and the time-dependent probabilities with various charges are deduced. It is shown that the Na 4 cluster is strongly ionized by C 6+ and that the number of emitted electrons per atom of Na 4 is larger than that of Na 2 under the same condition. One can find that the detailed information of the emitted electrons from Na 4 is different from the same from Na 2, which is possibly related to the difference in structure between the two clusters.


2013 ◽  
Vol 750-752 ◽  
pp. 1141-1145
Author(s):  
Ai Ling Ding ◽  
Feng Li ◽  
Chun Mei Li ◽  
Jing Ao ◽  
Zhi Qian Chen

We investigate the thermodynamic properties of superhard w-BC2N by using ab initio plane-wave pseudopotential density functional theory method within local density approximation (LDA). Through the quasi-harmonic Debye model, we investigate the thermodynamic properties of w-BC2N. The variation of the thermal expansion, the heat capacity and the Gruneisen parameter γ with pressure P and temperature T, and many other thermodynamic parameters of w-BC2N are obtained systematically.


2006 ◽  
Vol 959 ◽  
Author(s):  
Ghouti Merad ◽  
Benali Rerbal ◽  
Hafid Aourag ◽  
Joël Cibert

ABSTRACTAn atomistic modelling based on density functional theory within the framework of the local density approximation is used to show the trends in the energetic properties of single and double defects in CdTe semiconductor, without phase transformation. A systematic study of vacancies, Mn substituting Cd atoms in a supercell structure consisting of 16-atoms is presented. The changes of structural properties and lattice parameters due to the addition of Mn-atomic type defects in CdTe matrix are compared, and the number of vacancies is also determined from the total energy calculations.


2002 ◽  
Vol 16 (11n12) ◽  
pp. 1563-1569 ◽  
Author(s):  
G. PROFETA ◽  
A. CONTINENZA ◽  
F. BERNARDINI ◽  
G. SATTA ◽  
S. MASSIDDA

We report a detailed study of the electronic and dynamical properties of MgB2 , BeB2 and of the AlMgB4 superlattice, within the local density approximation to the density functional theory. On the basis of our results we discuss the superconducting properties of these systems, and point to the high T c in MgB2 as a fortunate combination of events.


2007 ◽  
Vol 14 (03) ◽  
pp. 481-487 ◽  
Author(s):  
I. N. YAKOVKIN ◽  
P. A. DOWBEN

In calculating band structure, the local density approximation and density functional theory are widely popular and do reproduce a lot of the basic physics. Regrettably, without some fine tuning, the local density approximation and density functional theory do not generally get the details of the experimental band structure correct, in particular the band gap in semiconductors and insulators is generally found to be too small when compared with experiment. For experimentalists using commercial packages to calculate the electronic structure of materials, some caution is indicated, as some long-standing problems exist with the local density approximation and density functional theory.


Sign in / Sign up

Export Citation Format

Share Document